q&more
My watch list
my.chemie.de  
Login  

News

The fast dance of electron spins

Chemists investigate the interactions of metal complexes and light

© Sebastian Mai

The extremely fast spin flip processes that are triggered by the light absorption of metal complexes were stimulated in the investigation.

07-Oct-2019: Metal complexes show a fascinating behavior in their interactions with light, which for example is utilized in organic light emitting diodes, solar cells, quantum computers, or even in cancer therapy. In many of these applications, the electron spin, a kind of inherent rotation of the electrons, plays an important role. Recently, the chemists Sebastian Mai and Leticia González from the Faculty of Chemistry of the University of Vienna succeeded in simulating the extremely fast spin flip processes that are triggered by the light absorption of metal complexes.

When a molecule is hit by light, in many cases a so-called "photoinduced" reaction is initiated. This can be thought of as the interplay of electron motion and nuclear motion. First, the absorption of light energetically "excites" the electrons, which for instance can weaken some of the bonds. Subsequently, the much heavier nuclei start moving. If at a later point in time the nuclei assume a favorable constellation with respect to each other, the electrons can switch from one orbit to another one. Controlled by the physical effect of "spin-orbit coupling" the electron spin can flip in the same moment.

This interplay of motion is the reason why spin-flip processes in molecules typically take quite long. However, computer simulations have shown that this is not the case in some metal complexes. For example, in the examined rhenium complex the spin-flip process already takes place within ten femtoseconds, even though in this short time the nuclei are virtually stationary—even light moves only three thousandths of a millimeter within this time. This knowledge is particularly useful for the precise control of electron spins, as, e.g., in quantum computers. 

Investigation is based on enormous computer power

One of the biggest difficulties during the investigation was the huge amount of computer power that was required for the simulations. Although for small organic molecules one can nowadays carry out very accurate simulations already with a modest amount of computational effort, metal complexes present a much bigger challenge. Among other reasons, this is due to the large number of atoms, electrons, and solvent molecules that need to be included in the simulations, but also because the electron spin can only be accurately described with equations from relativity theory. Altogether, the scientists from the Institute of Theoretical Chemistry spent almost one million computer hours at the Austrian super computer "Vienna Scientific Cluster" in the course of their study. This is equivalent to about 100 years of computer time on a typical personal computer.

Original publication:
Mai, Sebastian; González, Leticia; "Unconventional two-step spin relaxation dynamics of [Re(CO)3(im)(phen)]+ in aqueous solution"; Chemical Science; 2019.

Facts, background information, dossiers

More about Universität Wien

  • News

    How particulate matter arises from pollutant gases

    When winter smog takes over Asian mega-cities, more particulate matter is measured in the streets than expected. An international team, including researchers from Goethe University Frankfurt, as well as the universities in Vienna and Innsbruck, has now discovered that nitric acid and ammoni ... more

    Identifying virus killers in ancient medicinal plants

    Many organisms have to defend themselves against predators, diseases or pests. Their metabolic products constitute a chemical arsenal that has been used for medical purposes since time immemorial. Using state-of-the-art methods, a team led by Judith Rollinger is screening traditional knowle ... more

    New simulation-experiment combination allows deeper insights into ultrafast light-induced processes

    Researchers from Graz University of Technology and the University of Vienna are demonstrating for the first time how the energy flow between strongly interacting molecular states can be better described. Since the 1990s, femtochemistry has been researching ultrafast processes at the molecul ... more

  • q&more articles

    An all-round superfood?

    Whether the web community wants to lose weight or eat healthily, chia is their constant companion and seen by some as an all-round “superfood”. The relevant internet forums are busy swapping a whole host of recipes for chia pudding and chia fresca, followed by ideas for muffins and even mar ... more

  • Authors

    Prof. Dr. Susanne Till

    Susanne Till holds a doctorate in biology (main subject botany) and has worked as a lecturer in the Dept. of Nutritional Sciences at the University of Vienna for over 30 years. In her teaching work, Dr Till focuses on botany and biology, spices and native wild plants in human nutrition, as ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE