q&more
My watch list
my.chemie.de  
Login  

News

ClpX-ClpP protein complex could be starting point for new antibiotics

Weak spot in pathogenic bacteria

C. Gatsogiannis / MPI für molekulare Physiologie

Three cryo-electron microscopic views of the protein complex ClpX-ClpP.

08-Oct-2019: Antibiotics are still the most important weapon for combatting bacterial infections. But medical science is running out of “ammunition” because of more and more frequently occurring resistances. A research team has now elucidated the structure of the proteolytic complex ClpX-ClpP. This is a key to development of innovative antibiotics which target the degradation process of defective proteins in bacteria.

Almost 700,000 people in Europe suffer from infections every year through antibiotic-resistant pathogens; approximately 33,000 of them die. Despite this enormous and globally increasing danger, very few new antibiotics have been developed and approved in the past few decades.

There is no improvement in sight. That is why it is urgently necessary to find new points of attack in pathogenic bacteria and to develop new antibiotics which exploit these weak spots.

New mechanism of action destroys bacteria

A particularly promising point of attack for antibacterial therapies is the proteolytic enzyme ClpP: on the one hand it plays an important role in bacterial metabolism, and on the other hand it ensures the controlled degradation of defective proteins.

But for this purpose it requires the ClpX protein as a starting aid. In the complex with ClpP, ClpX identifies proteins which should be degraded, unfurls them and guides them into its barrel-like degradation chamber.

Scientists in the groups led by Prof. Stephan Sieber, Technical University of Munich (TUM) and Prof. Stefan Raunser, Director at the Max Planck Institute of Molecular Physiology in Dortmund, have now elucidated the three-dimensional structure of the ClpX-ClpP proteolytic complex for the first time and thereby established an important basis for future pharmacological applications.

A new class of potential antibiotics – the so-called acyldepsipeptide (ADEP) antibiotics – also brings about an uncontrolled degradation through ClpP without the support of ClpX. As a result also vital proteins are destroyed – with lethal consequences for the bacteria.

This unique mechanism of action has considerable innovation potential in the fight against pathogenic bacteria. Whereas common antibiotics act through the inhibition of vital processes, in this case the antibacterial effect is achieved through the activation of a process.

Disarming bacteria

In addition to the degradation of defective proteins, ClpP is also a decisive regulator in the production of an arsenal of bacterial toxins which are primarily responsible for the pathogenic effect of many pathogens.

At the TUM, the group led by Prof. Stephan Sieber has been successfully researching the ClpP protease for years, and has already developed a large number of potent inhibitors against ClpP and ClpX which stop the production of bacterial toxins and can therefore more or less disarm them. Dóra Balogh has now managed to produce and stabilize the ClpX-ClpP complex.

New possibilities through the elucidation of the structure of ClpX-ClpP

But up to recently the structure of the ClpX-ClpP complex could not yet be elucidated in detail. Dr. Christos Gatsogiannis, researcher in the group led by Prof. Stefan Raunser at the MPI of Molecular Physiology, has now managed this by means of cryogenic electron microscopy.

With this technology they were able to demonstrate that ADEP and ClpX dock onto ClpP at the same spot, but control the process of protein degradation in a different way: Whereas ClpX does not lead to an alteration in the structure of ClpP, ADEP brings about an unintended opening of the complex. As a result, intact proteins are also degraded in an uncontrolled manner and without the support of ClpX.

The clarification of this mechanism by the research teams from Dortmund and Munich is a milestone on the way to the development of innovative antibiotic substances targeting ClpP.

Original publication:
"Cryo-EM structure of the ClpXP protein degradation machinery"; C. Gatsogiannis, D. Balogh, F. Merino, S. A. Sieber, S. Raunser; Nature Structural & Molecular Biology; 3. Okt. 2019

Facts, background information, dossiers

  • antibiotics
  • antibiotic resistance
  • protein complexes
  • infections
  • bacteria
  • cryo-electron microscopy

More about TU München

  • News

    Light in the nanoworld

    An international team headed up by Alexander Holleitner and Jonathan Finley, physicists at the Technical University of Munich (TUM), has succeeded in placing light sources in atomically thin material layers with an accuracy of just a few nanometers. The new method allows for a multitude of ... more

    Activity of fuel cell catalysts doubled

    An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today. Fuel cells may well replace batteries as the powe ... more

    Tox "exhausts" immune cells

    Tumors and certain viral infections pose a challenge to the human body which the immune system typically fails to hand. In these diseases it switches to hypofunctional state that prevent adequate protection. A research team from the Technical University of Munich (TUM) has achieved a major ... more

  • q&more articles

    Diet, gut microbiota and host lipid metabolism

    Nature provides an enormous diversity of lipid molecules that originate from various pathways. Fatty acids are key modules for various lipids, including cell membrane lipids such as phospholipids or triacylglycerols, which are the major components of lipid droplets. Excess lipids or defects ... more

    Translation

    The structure of the big chemical and pharmaceutical companies has changed. Traditional centralised research departments conducting fundamental research have fallen victim to economic considerations. In exchange, young, dynamic start-up enterprises are increasingly brightening up the scene. ... more

  • Authors

    Dr. Josef Ecker

    Josef Ecker, born in 1978, studied biology at the University of Regensburg. He earned his doctorate in 2007, after which he researched as a postdoc at the University Hospital in Regensburg at the Institute of Clinical Chemistry. After several subsequent years in industry, working in executi ... more

    Prof. Dr. Arne Skerra

    Arne Skerra, born in 1961, studied chemistry at the Technical University of Darmstadt and obtained his doctoral degree as Dr. rer. nat. at the Gene Center of the Ludwig-Maximilians Univer­sity Munich in 1989. After staying at the MRC Laboratory of Molecular Biology in Cambridge, UK, and the ... more

    Dr. Thomas Letzel

    Thomas Letzel, born 1970, studied chemistry (1992–1998) at the TU Muenchen and the LMU Muenchen. He acquired his doctorate in 2001 with an environmental-analytical subject at the TU Muenchen, followed by a two years' postdoc stay at the Vrijen Universiteit Amsterdam. He qualified as a profe ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE