07-Nov-2019 - Forschungszentrum Jülich GmbH

Sensing magnetism in atomic resolution with just a scanning tunneling microscope

Researchers use single molecule on microscope tip as a sensor to detect magnetic moments with unprecedented spatial resolution

Scientists from the University of Strasbourg, France, in close collaboration with colleagues from the research centers in San Sebastián, Spain, and Jülich, Germany, have achieved a breakthrough in detecting the magnetic moments of nanoscale structures. They succeeded in making the magnetic moments visible with a resolution down to the atomic level using a scanning tunneling microscope, a device that has been standard in science for many years. The researchers made it sensitive to magnetic properties by placing a small molecule containing a Nickel atom at the microscope tip. The results published in the current issue of Science opens a novel path to achieve fundamental insights into atomic-scale structures and for the designing of future atomic-scale devices like nanoscale storage devices and quantum simulators.

To explore the world of individual atoms and molecules scientists use microscopes which don’t rely on a ray of light or electrons but can rather be seen as the ultimate version of an analogous record-player. These instruments named scanning probe microscopes use the end of a sharp needle as a tip to 'read' the grooves created by atoms and molecules on the supporting surface. To sense the proximity between tip and surface the scientists use a tiny electrical current which starts to flow when both are only separated by a fraction of a nanometer– that is a millions of a millimeter. Regulating the tip to keep this distance enables the topographic imaging by scanning the surface.

While the basic idea of such microscopes have been developed already in the 1980, only during the last decade scientist in different laboratories have learned to expand the capabilities of these microscopes by cleverly designing the very last end of their probing tip. For example, by attaching a small molecule, like CO or hydrogen, an unprecedented increase in spatial resolution was achieved in which the flexibility of the molecule made even chemical bonds visible.

Similarly, the authors of the recent publication in Science also specially crafted the tip apex to bring a novel function to the sharp tip: They made it sensitive to magnetic moments by placing a molecule containing a single Nickel atom, a so-called quantum molecular magnet, at the apex. This molecule can be brought electrically into different magnetic states with ease in a way that it acts like a tiny magnet. While its ground state possesses effectively no magnetic moment, its excited states do have a magnetic moment which senses near-by moments which unprecedented spatial resolution and high sensitivity.

The importance of this achievement is manifold. For the first time, this method makes it possible to image surface structures in combination with their magnetic properties in atomic resolution. The use of a molecule as active sensor makes it very reproducible and easy to implement in instruments used by other groups world-wide working in the field. “Dark” magnetic moments of complex magnetic structures, which are usually difficult to measure, become accessible, which is important for understanding their inner structure. And the method offers another advantage. Because the ground-state of the molecular sensor is non-magnetic, the measurement induces only minimal back-action onto the system under study – important to prevail volatile states at the nanoscale.

In summary, with this work scientists have expanded their nanoscale toolbox with a new tool sensitive to the magnetic properties which will be important for future applications ranging from nanoscale memory-devices to novel materials or applications in the field of quantum simulation and computing.

Facts, background information, dossiers

More about Forschungszentrum Jülich

  • News

    A New Tool for Cryo-Electron Microscopy

    Researchers at Forschungszentrum Jülich and Heinrich Heine University Düsseldorf led by Prof. Dr. Carsten Sachse are using cryo-electron microscopy, or cryo-EM for short, to make biomolecules visible at the atomic level. In a paper now published in the journal Nature Methods, they present a ... more

    Synapses as a model: solid-state memory in neuromorphic circuits

    They are many times faster than flash memory and require significantly less energy: memristive memory cells could revolutionize the energy efficiency of neuromorphic computers. In these computers, which are modeled on the way the human brain works, memristive cells function like artificial ... more

    Alzheimer’s Research: New Insights into the Formation of Toxic Protein Clumps

    Small aggregates of proteins known as Aβ oligomers are suspected as the main cause for the development of Alzheimer’s disease. However, it is not yet clear where and under what conditions these toxic aggregates form. Researchers from Heinrich Heine University Düsseldorf and Forschungszentru ... more

  • q&more articles

    Macromolecular environments influence proteins

    The high-intensity interaction of proteins with other macromolecules can cause signifi cant changes to protein properties such as translational mobility, for example, or their conformational states. Accordingly, the study of proteins in macromolecular environments that typically very closel ... more

    Caffeine Kick

    Caffeine is the most widely consumed psychoactive substance worldwide. It supplies the active ingredient in beverages such as coffee, tea and energy drinks. Caffeine can focus vigilance and attention, reduce drowsiness and enhance the ability to perform cognitive functions. Its neurobiologi ... more

  • Authors

    Prof. Dr. Jörg Fitter

    Jörg Fitter studied physics at the University of Hamburg. After completing his doctoral studies at FU Berlin, he worked in neutron scattering and molecular biophysics at the Hahn Meitner Institute in Berlin and Jülich Research Center. He completed his habilitation in physical biology at Hei ... more

    Dr. David Elmenhorst

    studied medicine in Aachen before receiving his doctorate in sleep research from the German Aerospace Centre (Deutsches Zentrum für Luft- und Raumfahrt, DLR) in Cologne. During 2008/2009, he was a visiting researcher at the Brain Imaging Centre in Canada’s Montreal Neurological Institute an ... more

    Prof. Dr. Andreas Bauer

    studied medicine and philosophy in Aachen, Cologne and Düsseldorf, where he received his doctorate in the field of neuroreceptor autoradiography. After specialist medical training at Cologne University Hospital he completed his habilitation in neurology at the University of Düsseldorf. Sinc ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: