q&more
My watch list
my.chemie.de  
Login  

News

Antibiotics: New substances break bacterial resistance

Bru-nO, pixabay.com, CC0

Symbolic image

13-Nov-2019: Researchers at the Martin Luther University Halle-Wittenberg (MLU) have developed a new, promising class of active ingredients against resistant bacteria. In initial tests in cell cultures and insects, the substances were at least as effective as common antibiotics. The new compounds target a special enzyme that only appears in bacteria in this specific form and that was not previously the target of other antibiotics. This is why bacteria have not yet developed any resistance to it.

Whether staphylococcus or the dreaded MRSA germs: resistant bacteria are a problem for physicians and patients worldwide. Only a few weeks ago, several large pharmaceutical companies also announced that they were further cutting back their own research work on new antibiotics. “However, in order to be able to treat infectious diseases reliably and in the long run, we need new active substances against which bacteria have not yet developed resistances,” says Professor Andreas Hilgeroth from the Institute of Pharmacy at MLU. Together with researchers from the University of Greifswald and the Julius Maximilian University of Würzburg, he is working on these new active substances in a research project funded by the Federal Ministry of Education and Research.

The scientists have developed new active ingredients that attack a special enzyme that only appears in this form in pathogenic bacteria: the so-called pyruvate kinase. It plays an important role in metabolic processes. The idea: If the metabolism of the bacteria is obstructed, this ultimately renders them harmless. “The pyruvate kinase is an ideal target for new active ingredients. In the best case, the new substances only affect the bacterial enzyme and therefore the bacteria. If so, there should be only a few side effects. In addition, this new target structure can be used to break existing antibiotic resistance,” Hilgeroth continues.

In cell experiments and initial tests on the larvae of the greater wax moth, a model organism used in life sciences, the researchers were able to confirm the efficacy of their new substances. The best compounds achieved at least as good results as conventional antibiotics. A patent application has also been filed for these active ingredients. “These initial results give us confidence that we are on the right track,” Hilgeroth says. However, the ingredients still have to undergo numerous other tests before they can be tested in large-scale clinical trials on humans. Thus it may take more than ten years before the substances of the scientists from Halle, Würzburg and Greifswald become a marketable drug.

Original publication:
Seethaler M. et al.; "Novel small-molecule antibacterials against Gram-positive pathogens of Staphylococcus and Enterococcus species"; Antibiotics; 2019

Facts, background information, dossiers

  • pyruvate kinase

More about MLU

  • News

    Forward or backward? New pathways for protons in water or methanol

    A collaborative ultrafast spectroscopy and ab initio molecular dynamics simulations study, as recently published by scientists of the Max Born Institute of Nonlinear Optics and Short Pulse Spectroscopy (MBI) and the Martin-Luther-University Halle-Wittenberg (MLU) in the Journal of the Ameri ... more

    Immune system of plants: It works differently than expected

    What happens at the molecular level when plants defend against invading pathogens? Previously it was assumed that the processes were roughly the same in all plants. However, this is not true, as a team of biologists from Martin Luther University Halle-Wittenberg (MLU) has demonstrated in a ... more

    Bacteria produce gold by digesting toxic metals

    High concentrations of heavy metals, like copper and gold, are toxic for most living creatures. This is not the case for the bacterium C. metallidurans, which has found a way to extract valuable trace elements from a compound of heavy metals without poisoning itself. One interesting side-ef ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE