My watch list


Five-fold boost in formaldehyde yield

O. Trapp

Reactors used for parallel screening of the effects of various pressures on formaldehyde synthesis.

15-Nov-2019: Environmentally benign methods for the industrial production of chemicals are urgently needed. LMU researchers recently described such a procedure for the synthesis of formaldehyde, and have now improved it with the aid of machine learning.

Formaldehyde is one of the most important feedstocks employed in the chemical industry, and serves as the point of departure for the synthesis of many more complex chemical products. Industrial production of formaldehyde is currently based on a large-scale procedure which consumes fossil fuels and requires a high energy input. More efficient and more sustainable modes of synthesis are therefore urgently needed, which could make a significant contribution to the mitigation of climate. LMU chemist Professor Oliver Trapp and his colleagues have now developed a new workflow for the production of formaldehyde, which is based on an algorithm constructed with the aid of machine learning. The new procedure increases yields of the compound by a factor of 5, as the team now reports in the journal Chemical Science. The authors of the study are convinced that their novel approach has great potential and can in principle be applied to other synthetic procedures.

Industrial synthesis of formaldehyde begins with syngas [a mixture of carbon monoxide (CO) and molecular hydrogen (H2)] – to which methanol is added before being oxidized with the help of a catalyst. However, the production of syngas itself requires high temperatures and fossil fuels such as natural gas or coal. In a previous study, the LMU researchers described the development of a reaction scheme which allowed a formaldehyde derivative to be synthesized in a single step from a mixture of hydrogen gas and carbon dioxide, in the presence of a homogeneous catalyst, under moderate conditions of temperature and pressure. On addition of methanol, this derivative could then be converted into the desired end-product. The strategy has a number of advantages over the conventional procedure. “First of all, it allows CO2, which is a byproduct of several industrial processes (for example, in the production of steel) to be recycled. So this approach not only enhances the efficiency of formaldehyde synthesis, it also reduces the rate of accumulation of CO2 in the atmosphere. In the light of ongoing climate change, this is a much sought-after and very welcome side-effect of the procedure,” says Trapp. “In addition, the whole process requires far less energy than alternative routes of synthesis, as it occurs at lower temperatures and involves fewer steps.”

The group has now optimized this procedure by varying no less than seven parameters that affect the yield of formaldehyde synthesis in their system, and using machine learning to identify the parameter combinations that give the best results. The essential feature of machine-learning algorithms is that they are capable of learning from experience, when provided with appropriate ‘training’ datasets. “In the method that we employed, called random forest, the initial datasets contain valid results obtained on the basis of empirical observations or calculations,” says Trapp. A subset of these data is used to train the algorithm, so that it can construct a mathematical relationship between these input data and the corresponding results. So the outcome of this step is a mathematical model. The model’s ability to account for the rest of the data can then evaluated, and the model can be progressively tuned.

Using this method, the LMU team was able to determine the optimal reaction conditions for their chemical system. By appropriately tuning the input parameters in a new reaction setup, they were able to test the efficacy of the algorithm directly. “The new reaction scheme increased the efficiency of synthesis by 500% relative to that of the conventional mode of formaldehyde production,” says Trapp. “This result significantly exceeded our expectations, and it demonstrates the potential of modern algorithms to maximize outcomes with minimal practical effort.”

The authors are confident that their results will motivate chemical engineers to adopt the process and implement it on a technical scale. “BASF, our partner in the project, is already engaged in assessing the industrial relevance of the process,” says Trapp. Given that annual global production of formaldehyde exceeds 20 million tons by a considerable margin, and demand for the compound continues to rise, this comparatively benign alternative to the current mode of synthesis could make an appreciable contribution to the reduction of greenhouse gases.

Original publication:
Max Siebert, Gerhard Krennrich, Max Seibicke, Alexander F. Siegle and Oliver Trapp; "Identifying high-performance catalytic conditions for the carbon dioxide reduction to dimethoxymethane by multivariate modelling"; Chemical Science; 2019

Facts, background information, dossiers

More about LMU

  • News

    Lifting the lid on beta-barrels

    The interaction between biotin and streptavidin is a well-established experimental tool in bionanotechnology. LMU physicists have now shown that the mechanical stability of the complex is dependent on the precise geometry of the interface. Mechanical forces play a vital role at all levels i ... more

    Structural biology: Special delivery

    Bulky globular proteins require specialized transport systems for insertion into membranes. Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have determined the structure of such a system for the first time, and propose that it exploits the principle of the airlock. Many proteins ... more

    A fine sense for molecules

    At the biochemical level, organisms can be thought of as complex collections of different species of molecules. In the course of their metabolism, biological cells synthesize chemical compounds, and modify them in multifarious ways. Many of these products are released into the intercellular ... more

  • Authors

    Prof. Dr. Thomas Carell

    Thomas Carell graduated in chemistry, completing his doctorate at the Max Planck Institute for Medical Research under the tutelage of Prof. Dr Dr H. A. Staab. Following a research position in the USA, he accepted a position at ETH Zurich, setting up his own research group in the Laboratory ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:


Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE