q&more
My watch list
my.chemie.de  
Login  

News

Magnetic nanoparticles with ionic liquids for water purification

Providing Safe, Clean Water

© Wiley-VCH

03-Dec-2019: In many parts of the world, access to clean drinking water is far from certain. Filtration of large volumes of water, however, is slow and impractical. In the journal Angewandte Chemie, scientists have introduced a new water purification method based on magnetic nanoparticles coated with a so-called “ionic liquid” that simultaneously remove organic, inorganic, and microbial contaminants, as well as microplastics. The nanoparticles are then easily removed with magnets.

Led by Carsten Streb, Robert Güttel, and Scott G. Mitchell, researchers from the University of Ulm, the Helmholtz Institute in Ulm (Germany), and CISC-Universidad de Zaragoza (Spain) developed an alternative approach around nanoparticles with a core of magnetic iron oxide and a shell of porous silicon dioxide. The surfaces of the nanoparticles were coated with a layer of an ionic liquid. An ionic liquid is a salt that is in its molten state at room temperature, making it a liquid without use of a solvent. The ionic liquid used by the researchers is based on polyoxometallates (POMs)—metal atoms bound into a three-dimensional network by oxygen atoms. In this case the metal of choice was tungsten because the polyoxotungstate anions can bind to heavy metals. As counterions, the researchers used bulky tetraalkylammonium cations with antimicrobial properties. The resulting ionic liquids form stable thin layers (supported ionic liquid phases) on the porous silicon dioxide surface of the nanoparticles. Once loaded with contaminants, the nanoparticles can simply be extracted from water with magnets.

In laboratory tests, the nanoparticles reliably removed lead, nickel, copper, chromium, and cobalt ions, as well as a dye called Patent Blue V as a model for organic impurities. The growth of various bacteria was also effectively stopped. In addition, the nanoparticles attached themselves to the surface of polystyrene spheres with diameters ranging from 1 to 10 µm—a model for microplastics—which could then be quantitatively removed.

Adjustment of the components of the nanoparticles should allow for further optimization of their properties, making the magnetic nanoparticles a highly promising starting point for both central and decentralized water purification systems. This would allow for easy purification of large amounts of water, even without extensive infrastructure.

Original publication:
Carsten Streb et al.; "Water Purification and Microplastics Removal using Magnetic Polyoxometalate‐Supported Ionic Liquid Phases (magPOM‐SILPs)"; Angewandte Chemie International Edition; 2019

Facts, background information, dossiers

More about Uni Ulm

  • News

    Bottom-up Synthesis of Crystalline 2D Polymers

    Scientists at the Center for Advancing Electronics Dresden (cfaed) at TU Dresden have succeeded in synthesizing sheet-like 2D polymers by a bottom-up process for the first time. A novel synthetic reaction route was developed for this purpose. The 2D polymers consist of only a few single ato ... more

    Decoding the structure of huntingtin

    Mutations on a single gene, the huntingtin gene, are the cause of Huntington's disease. They lead to an incorrect form of the correspondent protein. With the help of cryo-electron microscopy researchers from the Max Planck Institute of Biochemistry in Martinsried and Ulm University have now ... more

    Composite material for water purification

    Fresh, clean water coming directly from the tap is a true luxury. In developing countries, people often have no choice but to use a contaminated river for drinking water. Water filters can help by quickly converting polluted surface or ground water into safe drinking water. In the journal A ... more

More about Universidad de Zaragoza

  • News

    Composite material for water purification

    Fresh, clean water coming directly from the tap is a true luxury. In developing countries, people often have no choice but to use a contaminated river for drinking water. Water filters can help by quickly converting polluted surface or ground water into safe drinking water. In the journal A ... more

    Cooling with molecules

    An international team of scientists have become the first ever researchers to successfully reach temperatures below minus 272.15 degrees Celsius – only just above absolute zero – using magnetic molecules. The physicists and chemists are presenting their new investigation  in Nature Communic ... more

More about Angewandte Chemie

  • News

    Staining Cycles with Black Holes

    In the treatment of tumors, microenvironment plays an important role. It often contains immune cells that are so changed that they promote tumor growth. In the journal Angewandte Chemie, scientists have introduced a method by which cell samples from tumors and their surroundings can rapidly ... more

    Amplification and imaging of microRNA as a biomarker to detect tumor development

    A good indicator of dysregulation in live cells is a change in their RNA expression. MicroRNA (miRNA), a special type of RNA, is considered a biomarker for carcinogenic cells. A team of scientists from China has found a way to amplify miRNA in live tumor cells for bioimaging. As they report ... more

    One Drug, Three Action Modes

    Clinicians combat the drug resistances of some cancer types by using a combination of different drugs. To make this approach more effective, chemists have designed a chemical conjugate that can simultaneously attack several cellular targets using different modes of action. Such a single-dru ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE