04-Dec-2019 - Physikalisch-Technische Bundesanstalt (PTB)

New primary method for the measurement of pressure based on electrical measurements carried out on helium gas

Scientists from the Physikalisch-Technische Bundesanstalt (PTB) have implemented a novel pressure measurement method, quasi as a byproduct of the work on the "new" kelvin. In addition to being new, this procedure is a primary method, i.e. it only depends on natural constants. As an independent method, it can be used to check the most accurate pressure gauges, for which PTB is known as the world leader. Checking such instruments was formerly possible in the range of up to 100000 pascals only; now 7 million pascals are feasible. A comparison between mechanical and electrical pressure measurements has thus been carried out for the first time with a relative uncertainty of less than 5 × 10-6. Moreover, this new method offers unique possibilities to investigate helium – an important model system for the fundamentals of physics.

Have you ever been stepped on by a person wearing stilettos? If you are familiar with this kind of pain, you may have already considered that pressure corresponds to a force per unit of surface, or, to be more precise, that it is the result of a force applied vertically onto a surface. This is also the principle according to which the most accurate methods of pressure measurement work. When using a pressure balance, you measure the pressure of the gas under a piston of an exactly known surface by determining the gravitational force exerted onto the piston. PTB's pressure balances are currently the most accurate piston gauges in the world – high-precision instruments, each of them manufactured with great effort. As there are, however, pressure ranges in which even the best pressure balances do not measure as accurately as metrologists would like them to. There had been endeavors to develop alternative pressure measurement methods for a long time. "Our new method is actually very simple: it is based on measuring the density of the measuring gas helium by means of a capacitance measurement. It means that we measure to what degree the gas changes the capacitance of a special, highly stable capacitor between the electrodes," explains Christof Gaiser, physicist at PTB. This method only refers to one universal property of helium gas, which is expressed via the dielectric constant; it is therefore a primary method.

Gaiser and his colleagues have thus succeeded in realizing a groundbreaking theoretical approach for the first time in practice. As early as 1998, Mike Moldover of the US American metrology institute NIST had voiced his idea of measuring pressure via an electrical (capacitance) measurement using theoretical calculations of the gas properties of helium. In the following years, however, implementing this thought proved to be a real challenge. Both the precision capacitance measurement and the highly stable capacitors needed for this purpose, as well as the theoretical calculations using solely natural constants (ab initio calculations) were not yet possible with the required accuracy. Moreover, there was no accurate possibility to compare them with conventional pressure balances.

Each of the experimental obstacles has been removed at PTB over the last decade. Due to activities carried out within the scope of the new definition of the base unit kelvin, which reached its apex on 20 May this year with the introduction of an enhanced system of units, conventional pressure measurements both with pressure balances and via capacitance measurements were raised to an unprecedented level worldwide. Thanks to the latest theoretical calculations achieved by diverse research groups across the globe, it has now become possible to measure a pressure of 7 million pascals (i.e. 70 times normal pressure) with a relative uncertainty of less than 5 × 10-6. This measurement has been confirmed by comparison with a conventional pressure balance. It was the first comparison on an equal footing between mechanical and electrical pressure measurements.

Thus, a second method is now available to calibrate pressure with high accuracy. The method itself and the direct comparison with the conventional pressure standard offer, for one thing, the possibility to verify theoretical calculations of helium – an important model system in atomic physics. For another, they also allow other gases to be measured and thus, both theory and gas metrology to be further developed.

Facts, background information, dossiers

  • pressure measurement
  • natural constants
  • helium

More about Physikalisch-Technische Bundesanstalt

  • News

    Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

    Lead, cadmium, mercury, and arsenic do not belong in medicinal products. International requirements for the quality of medicines have therefore become more stringent and introduced new control requirements. Hence, it makes sense to use high-accuracy reference solutions with defined contents ... more

    Measurement of the dynamic mechanical properties of viscous materials

    In microsystems metallic components are increasingly being replaced by those from low-cost polymers. For the thickness measurement of polymers, there is now the DIN standard 32567 available, which describes both, optical and tactile surface measuring methods for the precise measurement of t ... more

    The most accurate optical single-ion clock worldwide

    Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. As early as 1981, Hans Dehmelt, who was to be awarded a ... more

  • q&more articles

    The importance of traceability in laboratory medicine

    World Metrology Day is celebrated annually on the 20th of May and this year’s focus on health provides an opportunity to emphasize the importance of comparable and reliable measurement results in laboratory medicine. more

    Natural constants take center stage

    The 20th of May 2019 is a special day. From that day on, the old definitions of what a kilogram, a mole, an ampere and a kelvin represent, are history. The future of the International System of Units will see natural constants play the star roles. more

    How the Avogadro constant was measured for the last time

    Since the 20th of May 2019, the mass unit kilogram is no longer defined by the international kilogram prototype but by the numerical value of the Planck constant, the most important fundamental constant in quantum physics. For this definition, the Planck constant needed to be measured with ... more

  • Authors

    Prof. Dr. Gavin O’Connor

    Gavin O’Connor was born in Dublin and completed a Diploma in analytical chemistry at Athlone Institute of Technology, Ireland, in 1993. He continued his studies in analytical chemistry to B.Sc. level in the UK before completing his PhD in mass spectrometry at the University of Plymouth in 1 ... more

    Dr. André Henrion

    André Henrion, born in 1957, studied chemistry at Humboldt-University in Berlin, where he received his doctorate in 1988 in the field of Physical Organic Chemistry. After working at the Academy of Sciences in Berlin for a short period he moved on to the Physikalisch-Technische Bundesanstalt ... more

    Rüdiger Ohlendorf

    Rüdiger Ohlendorf, born in 1959, studied chemical engineering with a focus on instrumental analysis at the Münster University of Applied Sciences. After working at ISAS (Institute for Spectrochemistry and Applied Spectroscopy) and at Schering AG, he moved on to the Physikalisch-Technische B ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: