10-Dec-2019 - Jacobs University Bremen gGmbH

The 136 Million Atom-Model

Scientists Simulate Photosynthesis

The conversion of sunlight into chemical energy is essential for life. In one of the largest simulations of a biosystem worldwide, scientists have mimicked his complex process for a component of a bacterium - on the computer, atom by atom. The work, which has now been published in the journal "Cell", is an important step towards a better understanding of photosynthesis in some biological structures. Headed by the University of Illinois, a team from Jacobs University Bremen was also involved in the international research cooperation.

The project was initiated by the late German-American physics professor Klaus Schulten from the University of Illinois, who researched the understanding and representation of atomic interactions of living systems. His research group modelled the chromatophore, a light-absorbing part of a cell that releases chemical energy in the form of a molecule called ATP. These chromatophores are found in plant cells as well as in some bacteria.

"They act like a solar cell of the cell. With their antenna complexes, they absorb light and release energy in the form of ATP for all other cell activities," says Ulrich Kleinekathöfer. The professor of theoretical physics at Jacobs University worked on the project together with his doctoral student Ilaria Mallus. Based on the data of their American colleagues, they performed quantum mechanical calculations for the model.

To find out how this system works, the international research group dissected the chromatophore with every tool available to science, from laboratory experiments over atomic force microscopy to software innovations. All parts were reassembled in the 136 million atom model, which behaves like its counterpart in nature. This was only possible with the help of enormously powerful supercomputers. "Standard simulations work with about 100,000 atoms, this model is 1,000 times larger, it is an advance into new dimensions," says Kleinekathöfer

So far, researchers have usually only been able to simulate individual proteins. The model shows the interplay of very many proteins along the entire process chain, from light absorption to the production of ATP. "At some point, we will be able to simulate an entire bacterium or cell," believes Kleinekathöfer. "This is an important step towards this goal."

Facts, background information, dossiers

  • atoms
  • photosynthesis
  • chromatophores

More about Jacobs University

  • News

    Breakthrough in Cell Research: New Method for Drug Delivery

    Cells are masters of self-protection. Their membranes let in substances that are vital for them, but block out other substances – including those that could be used to fight diseases. Overcoming this natural barrier is a central concern of cell research. Scientists at Jacobs University Brem ... more

    Deadly spider venom as a basic ingredient of medical applications?

    The black widow snatches its prey with venom. The bite of the spider can also be fatal for humans. Until now, it was unclear how the neurotoxin is structured exactly and how it works in detail. The research groups of Professor Richard Wagner, biophysicist at Jacobs University Bremen, and Pr ... more

    Why geckos can stick to walls

    It enables geckos to adhere to walls and ceilings, is involved in the formation of membranes in cells as well as in the docking of drugs to enzymes in the human body. Dispersion, i.e. the "weak interaction", is omnipresent in chemistry. A team of scientists at Jacobs University Bremen heade ... more

  • q&more articles

    Chlorogenic acids in coffee

    Chlorogenic acids (CGAs) are, by definition, esters formed from hydroxycinnamic acids and quinic acid. As such, they are produced by almost all plant species as secondary metabolites. In our diet, we take up substantial amounts of this class of compounds – around 1 g per day, in extreme cas ... more

  • Authors

    Prof. Dr. Nikolai Kuhnert

    Nikolai Kuhnert, born in 1967, studied Chemistry at Würzburg University (Germany) and earned his PhD in 1995 in the field of Inorganic Chemistry and Pharmaceutical Biology. After holding further positions in England (Cambridge, Oxford and Guildford), he has been working as Professor of Anal ... more

    Dr. Sabur Badmos

    Sabur Badmos, born in 1977, studied Biochemistry at the Universities of Lagos and Ibadan in Nigeria. He completed his PhD at Jacobs University Bremen (Germany) as a member of the working group led by Nikolai Kuhnert. His research interests lie in the field of analytical chemistry, with a pa ... more

More about UIUC

  • News

    New US and German collaboration aims to produce green hydrogen more efficiently

    Through a new award program, the U.S. National Science Foundation and the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG) have joined forces to award the University of Illinois Urbana-Champaign and Technical University of Darmstadt a three-year $720,000 research grant ($50 ... more

    Turn plastic waste into edible food

    Merck announced the winners of this year’s Future Insight Prize. The € 1 million prize in the category of “Food Generation” was awarded today during the Future Insight Days in Darmstadt, Germany, to Ting Lu, Professor of Bioengineering at the University of Illinois Urbana-Champaign, USA, an ... more

    Growth factors in single cells counted for the first time

    Whether healthy or diseased, human cells exhibit behaviors and processes that are largely dictated by growth factor molecules, which bind to receptors on the cells. For example, growth factors tell the cells to divide, move, and when to die--a process known as apoptosis. When growth factor ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: