10-Jan-2020 - Empa (Eidgenössische Materialprüfungs- und Forschungsanstalt)

Visualizing chemical reactions

On the way to synthetic fuels

Researchers at the joint EPFL-Empa lab in Sion have developed a reactor system and an analysis method that has allowed them to observe the real-time production of synthetic natural gas from CO2 and H2 for the first time.

Infrared (IR) thermography is used to determine the temperature of humans and objects with high precision and without interfering with the system. A single image taken with an IR camera can capture the same amount of information as hundreds to millions of temperature sensors at once. What's more, modern IR cameras can achieve fast acquisition frequencies of over 50 Hz, which allows the investigation of dynamic phenomena with high resolution.

Now, Swiss scientists have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions. The research was led by Robin Mutschler and Emanuele Moioli at the joint EPFL-Empa lab of Andreas Züttel in Sion and they collaborated with researchers at the Polytechnic University of Milan.

The scientists applied their method to catalytic surface reactions between carbon dioxide and hydrogen, including the Sabatier reaction, which can be used to produce synthetic methane from renewable energy by combining CO2 from the atmosphere and H2 from water splitting, thus enabling the synthesis of e-fuels – renewable synthetic fuels with properties similar to their fossil counterparts. The Sabatier reaction will also be used in the projected methane production in the "move" mobility demonstrator on the Empa campus in Dübendorf. A catalyst is required in this chemical process to activate the relatively inert CO2 as a reactant.

Optimized reactor and catalyst designs

In particular, the researchers focused on the investigation of dynamic reaction phenomena occurring during the reaction activation from different initial catalyst states. “The reaction on the catalyst is favored by a hydrogenated surface while an exposure to CO2 poisons the catalyst and inhibits a fast reaction activation,” says Mutschler. And Moioli adds: “Thanks to this new approach, we could visualize new dynamic reaction phenomena never observed before.”

In their study, they showed the catalyst working and responding to changes in feed gas composition in real time for the first time. Due to their results, the reaction startup and activation behavior are now better understood, which can lead to optimized reactor and catalyst designs to improve the performance of these reactor systems working in dynamic conditions.

This is crucial since renewable energy typically provides energy and reactants in varying quantities and, therefore, the reactors converting renewable energy to fuels have to be adapted to work in dynamic conditions. The study was supported by the Swiss National Science Foundation (SNSF).

Facts, background information, dossiers

More about Empa

  • News

    A new biosensor for the COVID-19 virus

    A team of researchers from Empa, ETH Zurich and Zurich University Hospital has succeeded in developing a novel sensor for detecting the new coronavirus. In future it could be used to measure the concentration of the virus in the environment - for example in places where there are many peopl ... more

    Printing complex cellulose-based objects

    Researchers from ETH Zurich and the Swiss Federal Laboratories for Materials Science and Technology (Empa) have set a new world record: they 3D printed complex objects with higher cellulose content than that of any other additively manufactured cellulose-​based parts. To achieve this, they ... more

    How to program materials

    Can the properties of composite materials be predicted? Empa scientists have mastered this feat and thus can help achieve research objectives faster. This leads, for instance, to better recycling techniques and electrically conductive synthetic materials for the solar industry. Ali Gooneie ... more

More about Ecole Polytechnique Fédérale de Lausanne

  • News

    Carbyne – an unusual form of carbon

    Which photophysical properties does carbyne have? This was the subject of research carried out by scientists at FAU, the University of Alberta, Canada, and the Ecole Polytechnique Fédérale de Lausanne in Switzerland, which has led to a greater understanding of the properties of this unusual ... more

    "Simulation microscope" examines transistors of the future

    Since the discovery of graphene, two-​dimensional materials have been the focus of materials research. Among other things, they could be used to build tiny, high-​performance transistors. Researchers at ETH Zurich and EPF Lausanne have now simulated and evaluated one hundred possible materi ... more

    Emergence of calorie burning fat cells

    1.9 billion people in the world are overweight. Of these, 650 million people are obese, which increases the risk of secondary diseases such as high blood pressure or cancer. Professor Martin Klingenspor and his team at the Technical University of Munich (TUM) examine how our fat metabolism ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: