q&more
My watch list
my.chemie.de  
Login  

News

Unlimited potential: New ways to generate totipotent-like cells

©Helmholtz Zentrum München

Cell fate reprogramming is accompanied by many molecular changes.

13-Jan-2020: Totipotency is set to become a key tool for research and future medical applications. Finding efficient ways to generate totipotent-like cells is therefore crucial. In a new study, a group of researchers at Helmholtz Zentrum München found that totipotent-like cells can be induced by manipulating the availability of metabolites in pluripotent cells. These findings open up new possibilities for cell re-programming.

Totipotent cells own the highest differentiation potential of all cells. They can only be found shortly after fertilization in an early embryonic state and are capable of producing all cell types. Pluripotent cells, also called embryonic stem cells, on the contrary have lost some of this potential as they have already further developed. In order to be able re-program their initial totipotency, it is crucial to have a broad knowledge about the differences between pluripotent and totipotent cells as the elimination of these differences might lead to totipotency. One of the possible differences, which so far has not been investigated, is whether totipotent and pluripotent cells have different metabolic needs and activities.

Adding metabolites for more potential

To find an answer to this question, the researchers in a first step compared the gene expression of pluripotent and totipotent-like cells, which are also referred to as “2-cell-like cells”, in culture. They discovered differences in metabolic enzymes and regulators involved in glycolysis, TCA-cycle, electron transport and glutamine metabolism. To dig deeper into these differences, Diego Rodriguez-Terrones from the Institute of Epigenetics and Stem Cells and Götz Hartleben from the Institute for Diabetes and Cancer teamed up to be able to measure oxygen consumption in 2-cell like cells, which was thus far not possible. They found that totipotent-like cells consume different amounts of oxygen compared to pluripotent cells. In addition, they observed differences in mitochondria morphology and reactive oxygen species (ROS) levels between pluripotent and totipotent-like cells. These findings led to the hypothesis that by adding specific metabolites pluripotent cells could re-programmed in a way to induce totipotent-like cells. Indeed, after analyzing 20 different metabolites, the group successfully identified 3 metabolites which are shown for the first time to induce totipotent-like cells in culture.

“Totipotent-like cells are invaluable to gain more knowledge about cellular plasticity. With these manipulated cells, we might be able to study and recreate the molecular features of totipotency in vitro.
Also, they open up the possibility for us to study very early developmental events during mammalian embryogenesis,” says Rodriguez-Terrones. “In future, totipotent-like cells could be very important for cell replacement therapies. The ability to generate them efficiently with metabolites paves the way for further research and innovation.”

Original publication:
D. Rodriguez-Terrones et al.; "A distinct metabolic state arises during the emergence of 2-cell-like cells"; EMBO Reports; 2019

Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH

Request information now

Recommend news PDF version / Print Add news to watchlist

Share on

Facts, background information, dossiers

  • totipotent cells
  • pluripotent cells

More about Helmholtz Zentrum München

  • News

    New drug combination restores beta cell function in animal model

    The loss of the identity of insulin-secreting beta cells in the islet of Langerhans, a process also called beta cell dedifferentiation, has been proposed to be a main reason for the development of diabetes. If and how dedifferentiated beta cells can be targeted by pharmacological interventi ... more

    Looking at the good vibes of molecules: a new method for label-free metabolic imaging

    Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy. The simultaneous visualization of dynamic alterations for classes of metabolites, such as carbohydrates and lipids, was an unmet need in biomedical research. Now, a novel imaging method developed by a ... more

    New algorithm detects even the smallest cancer metastases across the entire mouse body

    Teams at Helmholtz Zentrum München, LMU Munich and the Technical University of Munich (TUM) have developed a new algorithm that enables automated detection of metastases at the level of single disseminated cancer cells in whole mice. Cancer is one of the leading causes of death worldwide. M ... more

  • q&more articles

    Using deep learning to better understand blood disorders

    For a long time, doctors have been diagnosing disorders of the body’s hematopoietic system using a light microscope. The analysis of individual blood cells is largely performed manually. Now, artificial intelligence can lend them a digital hand. more

  • Authors

    Dr. Carsten Marr

    Carsten Marr, born in 1977, received his diploma in general physics from the Technische Universität München in 2002. He wrote his diploma thesis at the Max-Planck-Institute for Quantum Optics, Garching, Germany, and in 2003 visited the Quantum Information and Quantum Optics Theory Group at ... more

    Dr. Christian Matek

    Christian Matek, born in 1986, received undergraduate degrees in both Physics and Medicine in Munich. He then moved to the UK and finished his DPhil in Theoretical Physics at Oxford University in 2014. Since 2017, his main research interest has been applying artificial intelligence and mach ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE