q&more
My watch list
my.chemie.de  
Login  

News

Chemists allow boron atoms to migrate

Researchers present carbon-carbon couplings in which the semi-metal boron is retained

21-Jan-2020: Organic molecules with atoms of the semi-metal boron are among the most important building blocks for synthesis products that are needed to produce drugs and agricultural chemicals. However, during the usual chemical reactions used in industry, the valuable boron unit, which can replace another atom in a molecule, is often lost. Chemists at the University of Münster have now succeeded in significantly expanding the range of applications of commercially and industrially used boron compounds, so-called allylboronic esters.

Since so-called boronic acid derivatives are very versatile and reliably applicable in their variants, chemists often use them to build up important carbon-carbon couplings (C-C couplings). The most important process using boronic acid derivatives is the Nobel Prize-winning Suzuki-Miyaura coupling. Also widely used in synthesis are the so-called allylboronic esters, which also belong to this class of boron compounds.

In their current study, the chemists headed by Prof. Armido Studer of the Organic Chemical Institute at Münster University are now presenting C-C couplings in which the boron unit from the starting material is retained in the product. The scientists use methods of so-called radical chemistry for this purpose. The principle works like this: The boron unit "migrates" from one carbon atom to the neighbouring atom, thus enabling a second C-C coupling.

Using this method, the chemists can gradually incorporate individual building blocks of molecules at different points in the basic structure. "Since the boron unit remains in the product molecule, i.e. is 'preserved', it can be replaced by another molecular unit, which can be done using the entire spectrum of industrial methods. The commercially available allylboronic esters thus appear in a new guise," says Armido Studer, the lead author of the study. The new method may in future be relevant for the production of drugs. In the future, the new method may be relevant for the production of pharmaceuticals, among other things.

Original publication:
K. Jana et al.; "Radical 1,3-Difunctionalization of Allylboronic Esters with Concomitant 1,2-Boron Shift"; Chem; 2020

Facts, background information, dossiers

  • boron
  • boronic acid derivatives
  • radical chemistry

More about WWU Münster

  • News

    Two chiral catalysts working hand in hand

    Just as our left hand is not superposable to our right hand, the mirror image of certain molecules cannot be overlapped onto it, even when turned or twisted. These two mirror images are referred to by chemists as enantiomers and the molecule is said to be chiral. Chirality, which is a word ... more

    Light to build biologically active compounds

    Some of the most biologically active molecules, including synthetic drugs, contain a central, nitrogen-containing chemical structure called an isoquinuclidine. This core has a three-dimensional shape which means it has the potential to interact more favourably with enzymes and proteins than ... more

    New insights into the evolution of proteins

    How do bacteria manage to adapt to synthetic environmental toxins and, for example, to even develop strategies for using a pesticide and chemical warfare agent as food within less than 70 years? The evolutionary adaptations underlying such processes have now been studied in detail by an int ... more

  • q&more articles

    Expressive

    Coupling biological molecules to surfaces, and using them in this form for measurement procedures, for analysis and in production processes, is a novel approach that is gaining increasing importance in industrial applications. Using established procedures, surfaces and biological molecules ... more

  • Authors

    Prof. Dr. Joachim Jose

    born 1961,studied biology at the University of Saarbrücken, where he was awarded a doctorate. He gained his professorship at the Institute of Pharmaceutical and Medicinal Chemistry of the University of the Saarland. From 2004 to 2011, he was professor for bioanalytics (C3) at the Heinrich-H ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE