q&more
My watch list
my.chemie.de  
Login  

News

Let’s build a cell

Researchers engineer a minimal synthetic cellular system to study basic cell function

Copyright: Love et al. / MPI-CBG

Synthetic cells with compartments. Magenta shows the lipid membrane, cyan shows the fluorescently tagged membrane-free sub-compartments.

24-Jan-2020: Cells are the basic unit of life. They provide an environment for the fundamental molecules of life to interact, for reactions to take place and sustain life. However, the biological cell is very complicated, making it difficult to understand what takes place inside it. One way to tackle this biological problem is to design a synthetic minimal cell as a simpler system compared to biological cells. Researchers at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden and the Max-Planck-Institute of Colloids and Interfaces (MPICI) in Potsdam accomplished such an engineering challenge by building a synthetic cell that can encapsulate fundamental biochemical reactions. They also show that such a minimal system can respond to changes in environment.

Cells make up the basic building blocks of life. They provide a distinct and dynamic environment for the organization of molecules and reactions that are needed to sustain life. Inside the cell there are countless molecules including DNA, proteins, sugars, and fats (lipids) that need to come together in different ways. To understand, how cells organize all these components to function in a complex environment, scientists have been building synthetic cells with fewer components to engineer simple systems that mimic certain cellular processes. This research field of synthetic biology combines engineering and biology and focuses on taking parts of the natural biological system and simplifying it.

Despite much progresses in the synthetic biology field, building dynamic systems is still very difficult. The research team, funded through the MaxSynBio network, made up of MPI-CBG research group leader Dora Tang in collaboration with MPICI research group leaders Rumiana Dimova and Tom Robinson have now accomplished this engineering challenge and built a synthetic cell that can react to changes in the environment. The researchers constructed a compartment with a membrane that contains a membrane-free sub-compartment inside it. This sub-compartment can assemble and disassemble depending on changes to the environment. The key challenge during this process was to create a sub-compartment from molecules that were floating within the synthetic cell. These cells were visualized by fluorescence microscopy. Celina Love, the first author of the study, explains: “Just like our taste buds can let us experience tastes that are salty or sour, components inside a cell can also respond to the acidity (pH) of an environment. We found that by changing the pH of the environment, we can affect the behavior of molecules coming together and their ability to form sub-compartments. It was especially exciting to see how chemical reactions could be switched on and off by changing the acidity within the synthetic cell.”

Dora Tang, the supervisor of the study, gives an outlook: “Our work is a major step forward in the design of more complex synthetic cells that can mimic biological behaviors.” She adds: “This tunable synthetic system presents exciting possibilities in addressing fundamental questions in biology, such as how cells integrate a multitude and variety of signals from the environment to perform and tune basic cellular functions such as metabolism.”

Original publication:
Celina Love, Jan Steinkühler, David T. Gonzales, Naresh Yandrapalli, Tom Robinson, Rumiana Dimova, T.‐Y. Dora Tang; "Reversible pH responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions"; Angewandte Chemie, International Edition, 14. Januar, 2020.

Facts, background information, dossiers

  • cells
  • synthetic cells
  • synthetic biology

More about MPI für molekulare Zellbiologie und Genetik

  • News

    The lipid code

    Lipids, or fats, have many functions in our body: They form membrane barriers, store energy or act as messengers, which regulate cell growth and hormone release. Many of them are also biomarkers for severe diseases. So far, it has been very difficult to analyze the functions of these molecu ... more

    How cells stick together tightly

    Our organs are specialized compartments, each with its own milieu and function. To seal our organs, the cells in the tissue must form a barrier which is tight even down to the level of molecules. This barrier is formed by a protein complex that “sticks” all the cells together without any ga ... more

    Liquid crystal liver

    The currently used simplified model of mammalian liver tissue can only show in a limited way how liver tissue is structured and formed. Almost 70 years later, researchers at the Max Planck Institutes of Molecular Cell Biology and Genetics as well as for the Physics of Complex Systems togeth ... more

More about MPI für Kolloid- und Grenzflächenforschung

  • News

    Put into the right light - Reproducible and sustainable coupling reactions

    A team of researchers reports in the journal Nature Catalysis that sustainable carbon-nitrogen cross-couplings can be performed using simple nickel salts, carbon nitrides and light. The chemists study the use of cost-effective and reproducible semiconductors as photocatalysts in coupling re ... more

    "Make two out of one" - Division of Artificial Cells

    The success of life on earth is based on the amazing ability of living cells to divide themselves into two daughter cells. During such a division process, the outer cell membrane has to undergo a series of morphological transformations that ultimately lead to membrane fission. Scientists at ... more

    "Form is function"

    Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam have shown that growing bone tissue behaves like a viscous liquid on long time scales, thereby accepting forms with minimal surface area. This cell behavior determines the shape of the tissue when it grows on a sc ... more

  • q&more articles

    With Light in the Fight against Malaria

    Malaria represents a global threat to health, which is difficult to keep under control. Amongst more than 200 million sufferers, over 500,000 die each year of the disease, with the risk of a fatal outcome being particularly high in children [1]. more

  • Authors

    Dr. Daniel Kopetzki

    born 1983, studied chemistry at the University of Regensburg and received his doctorate from the Max Planck Institute of Colloids and Interfaces in Potsdam, in the Department of Colloid Chemistry. Since Sept. 2011, he has been working as a post-doctoral fellow for Prof. Dr. Seeberger at the ... more

    Prof. Dr. Peter Seeberger

    born 1966, studied chemistry at the University of Erlangen-Nuremberg, and received his doctorate in biochemistry from the University of Colorado. After holding a post-doctorate position at the Sloan-Kettering Institute for Cancer Research in New York City, he was Assistant Professor and Fir ... more

More about Max-Planck-Gesellschaft

  • News

    Green Chemistry: Sustainable p-xylene production

    Lemonade, juice and mineral water often come in PET bottles. While these are practical and functional, their production is complex and not necessarily sustainable. The starting material for terephthalic acid, which is used to produce saturated polyesters such as PET (Polyethylene terephthal ... more

    How to design more reliable nano- and micro-electro-mechanical systems

    Mobile phones, data storage for laptops, solar cells, power electronics for renewable energy, or sensors in cars are applications where silicon is the first-choice material despite that its mechanical behaviour at elevated temperature is not yet fully understood. To design efficient and rel ... more

    Bacteria leave signature in colon cancer cells

    Some bacterial pathogens cause damage in the genomes of their infected cells which could lead to the initiation of cancer. While it is difficult to link an infection with an onset of cancer that arises many years later in life, researchers have been looking for definitive proof that such li ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE