q&more
My watch list
my.chemie.de  
Login  

News

A real alternative to crude oil

The synthesis of bio-based high-performance polyamide from biogenic residues

P. Stockmann / TUM

Monomeric unit of poly-3S-caranamide, the new bio-based polyamide.

C. Zollfrank / TUM

The two authors, Paul Stockmann and Dr. Daniel Van Opdenbosch, with the reactor in which the polymerizable monomer was produced from the natural product 3-carene.

29-Jan-2020: A research team from the Fraunhofer Society and the Technical University of Munich (TUM) led by chemist Volker Sieber has developed a new polyamide family which can be produced from a byproduct of cellulose production – a successful example for a more sustainable economy with bio-based materials.

Polyamides are important plastics. They can be found in ski bindings and in cars or items of clothing. Commercially, they have been made predominantly from crude oil up until now; there are just a few “green” alternatives, such as polyamides based on castor oil.

Bio-based compounds are often significantly more expensive to produce and have therefore only been able to penetrate the market before now if they have had particular properties.

A team led by Volker Sieber, Professor of the Chemistry of Biogenic Raw Materials at TU Munich, has now developed a completely new polyamide family which can be produced from a byproduct of cellulose production.

New polyamide family

The biogenic starting material, (+)-3-carene, is made up of two rings which are fused to one another. The chemists at the TUM and the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB) in Straubing have now modified one of the rings in such a way that it can be opened up, yielding a long chain of molecules, a polymer.

The second ring remains intact here. In this way, instead of a linear polymer chain like in traditional polyamides, a chain which bears many small rings and other side groups emerges. This gives the polymer completely new functions.

Special properties

The new polyamides impress thanks to their special properties which make them attractive for many applications. For example, they melt at higher temperatures than the competing crude oil derived products. In addition, the new compounds can be produced transparently as well as in a partially crystalline manner, which increases its later application possibilities using the same starting substance.

“By way of reaction conditions and catalysts during synthesis, we can easily control whether we will obtain a transparent or partially crystalline polyamide in the end,” explains Sieber. “However, the basis for this is offered above all by the specific structure of the bio-based starting material which would be very expensive to obtain from fossil raw materials.”

Increasing sustainability

From an industrial point of view, it is important that the synthesis basically takes place in one reaction container. This “one-pot” process would not just allow a significant reduction in costs, but would also mean a clear increase in sustainability, according to Sieber.

The biogenic starting material (+)-3-carene can actually be distilled at a high purity and comparatively low cost from the turpentine oil produced as a secondary product in the cellulose industry.

Up until now, the turpentine oil was only heated in the cellulose factories. “We use it as a vital starting material for plastics,” says Sieber. “This is an enormous increase in value.”

No competition with food production

Sieber points out that with turpentine oil being a side product of the forest industry, in contrary to the use of castor oil, we are not competing against food production. The researchers are not yet completely satisfied with the achieved overall yield of the process, this is at 25 percent by mass.

“Thanks to the simple scalability, the potential for an efficient process is very high,” says Paul Stockmann, whose doctoral thesis at the TUM is based on the findings. At the Fraunhofer IGB, the chemist is now working on establishing (+)-3-carene-based polyamides on the market as alternatives to crude-oil-based high-performance polyamides.

Original publication:
Paul N. Stockmann, Daniel Van Opdenbosch, Alexander Poethig, Dominik L. Pastoetter, Moritz Hoehenberger, Sebastian Lessig, Johannes Raab, Marion Woelbing, Claudia Falcke, Malte Winnacker, Cordt Zollfrank, Harald Strittmatter, Volker Sieber; "Biobased Chiral Semi-Crystalline or Amorphous High-Performance Polyamides and their Scalable Stereoselective Synthesis"; Nature Communications; 24.01.2020

Facts, background information, dossiers

  • biomaterials

More about TU München

  • News

    3D images display plant organs down to the smallest detail

    Using artificial intelligence, researchers have developed a novel computer-based image processing method for plant sciences. The method enables the detailed 3D representation of all cells in various plant organs with unprecedented precision. Plant organs, such as the root, the shoot axis, t ... more

    Secure nano-carrier delivers medications directly to cells

    Medications often have unwanted side-effects. One reason is that they reach not only the unhealthy cells for which they are intended, but also reach and have an impact on healthy cells. Researchers at the Technical University of Munich (TUM), working together with the KTH Royal Institute of ... more

    In the hunt for new treatments against the coronavirus

    Currently, the corona pandemic is dominating the entire social life in Germany and in many other parts of the world. We are working flat out in order to better help the more than one hundred thousand seriously ill people in hospitals. One promising approach to extending current treatment me ... more

  • q&more articles

    Biobased raw material flows of the future

    Anthropogenic climate change and the rising world population, in combination with increasing urbanization, poses global challenges to our societies that can only be solved by technological advancement. The direct biotechnological use of greenhouse gases, including residual biomass flows fro ... more

    Taste and aroma boost in the mouth

    The food trend towards healthy snacks is continuing. Snacks made from freeze-dried fruit meet consumer expectations of modern and high-quality food. However, freeze drying of whole fruits requires long drying times and substantially reduces sensorial quality, which is unappealing to consumers. more

    Diet, gut microbiota and host lipid metabolism

    Nature provides an enormous diversity of lipid molecules that originate from various pathways. Fatty acids are key modules for various lipids, including cell membrane lipids such as phospholipids or triacylglycerols, which are the major components of lipid droplets. Excess lipids or defects ... more

  • Authors

    Prof. Dr. Thomas Brück

    Thomas Brück, born in 1972, obtained his B.Sc. in chemistry, biochemistry and management science from Keele University, Stoke on Trent. Additionally, he holds an M.Sc. in molecular medicine from the same institution. In 2002, Thomas obtained his Ph.D. in Protein Biochemistry from Imperial C ... more

    Dr. Norbert Mehlmer

    Norbert Mehlmer, born in 1977, studied biology at the University of Salzburg and wrote his diploma thesis at the Max Planck Institute for Molecular Genetics in Berlin. He earned his doctorate in genetics/microbiology at the Max F. Perutz Laboratories (MFPL) of the University of Vienna. Subs ... more

    Dr. Mahmoud Masri

    Mahmoud Masri accomplished his studies in Applied Chemistry at the University of Damascus and received his Master in 2010. He has been working as Quality Assurance Manager for five years. In 2019, he obtained his doctoral degree in biotechnology at the Technical University of Munich (TUM) w ... more

More about Fraunhofer-Institut IGB

  • News

    Producing vaccines without the use of chemicals

    Producing vaccines is a tricky task – especially in the case of inactivated vaccines, in which pathogens must be killed without altering their structure. Until now, this task has generally involved the use of toxic chemicals. Now, however, an innovative new technology developed by Fraunhofe ... more

    Spray drying: Perfect dosing thanks to drug capsules

    Instant coffee and powdered milk are produced by spray drying. Fraunhofer researchers have adapted this technique to the tricky question of incorporating insoluble substances in core-shell particles. The new method helps reduce the concentration of active ingredients in therapeutic medicati ... more

    Rapid test identifies disease pathogens

    At present, bacteria, fungi or viruses can generally only be detected with certainty by way of elaborate laboratory tests or animal experiments. The food and pharmaceutical industries would like to have faster tests to check their products. Fraunhofer researchers are therefore developing a ... more

  • q&more articles

    3D tissue models with immune competence

    Innate immunity is a central component of the human immune defense. Pattern recognition receptors (PRRs), such as the toll-like receptors (TLRs), play a key role in this system. They are omnipresent in nature and found in plants, insects, vertebrates and human beings. more

  • Authors

    Dr. Anke Burger-Kentischer

    Anke Burger-Kentischer received her doctorate from the University of Tübingen on “Cellular and molecular mechanisms of radiation-induced pulmonary fibrosis”. During her postdoctoral stay at the Institute of Physiology at the Ludwig-Maximilians-University of Munich, she focused on the cell-s ... more

    Dr. Kai Sohn

    Kai Sohn, born in 1968, studied biology at Heidelberg University and graduated with a diploma degree. He received his doctorate in 1997 from the Biochemistry Center of Heidelberg University. From 1998, Dr. Sohn worked as a postdoctoral researcher at the University of Stuttgart on medically ... more

    Prof. Dr. Steffen Rupp

    Steffen Rupp, born in 1962, studied chemistry at the Universities of Stuttgart, Freiburg and Cincinnati. He received a doctorate with distinction in 1994 from the Institute for Biochemistry at the University of Stuttgart. From 1995 to 1998, he worked on differentiation processes in yeasts a ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE