q&more
My watch list
my.chemie.de  
Login  

News

A real alternative to crude oil

The synthesis of bio-based high-performance polyamide from biogenic residues

P. Stockmann / TUM

Monomeric unit of poly-3S-caranamide, the new bio-based polyamide.

C. Zollfrank / TUM

The two authors, Paul Stockmann and Dr. Daniel Van Opdenbosch, with the reactor in which the polymerizable monomer was produced from the natural product 3-carene.

29-Jan-2020: A research team from the Fraunhofer Society and the Technical University of Munich (TUM) led by chemist Volker Sieber has developed a new polyamide family which can be produced from a byproduct of cellulose production – a successful example for a more sustainable economy with bio-based materials.

Polyamides are important plastics. They can be found in ski bindings and in cars or items of clothing. Commercially, they have been made predominantly from crude oil up until now; there are just a few “green” alternatives, such as polyamides based on castor oil.

Bio-based compounds are often significantly more expensive to produce and have therefore only been able to penetrate the market before now if they have had particular properties.

A team led by Volker Sieber, Professor of the Chemistry of Biogenic Raw Materials at TU Munich, has now developed a completely new polyamide family which can be produced from a byproduct of cellulose production.

New polyamide family

The biogenic starting material, (+)-3-carene, is made up of two rings which are fused to one another. The chemists at the TUM and the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB) in Straubing have now modified one of the rings in such a way that it can be opened up, yielding a long chain of molecules, a polymer.

The second ring remains intact here. In this way, instead of a linear polymer chain like in traditional polyamides, a chain which bears many small rings and other side groups emerges. This gives the polymer completely new functions.

Special properties

The new polyamides impress thanks to their special properties which make them attractive for many applications. For example, they melt at higher temperatures than the competing crude oil derived products. In addition, the new compounds can be produced transparently as well as in a partially crystalline manner, which increases its later application possibilities using the same starting substance.

“By way of reaction conditions and catalysts during synthesis, we can easily control whether we will obtain a transparent or partially crystalline polyamide in the end,” explains Sieber. “However, the basis for this is offered above all by the specific structure of the bio-based starting material which would be very expensive to obtain from fossil raw materials.”

Increasing sustainability

From an industrial point of view, it is important that the synthesis basically takes place in one reaction container. This “one-pot” process would not just allow a significant reduction in costs, but would also mean a clear increase in sustainability, according to Sieber.

The biogenic starting material (+)-3-carene can actually be distilled at a high purity and comparatively low cost from the turpentine oil produced as a secondary product in the cellulose industry.

Up until now, the turpentine oil was only heated in the cellulose factories. “We use it as a vital starting material for plastics,” says Sieber. “This is an enormous increase in value.”

No competition with food production

Sieber points out that with turpentine oil being a side product of the forest industry, in contrary to the use of castor oil, we are not competing against food production. The researchers are not yet completely satisfied with the achieved overall yield of the process, this is at 25 percent by mass.

“Thanks to the simple scalability, the potential for an efficient process is very high,” says Paul Stockmann, whose doctoral thesis at the TUM is based on the findings. At the Fraunhofer IGB, the chemist is now working on establishing (+)-3-carene-based polyamides on the market as alternatives to crude-oil-based high-performance polyamides.

Original publication:
Paul N. Stockmann, Daniel Van Opdenbosch, Alexander Poethig, Dominik L. Pastoetter, Moritz Hoehenberger, Sebastian Lessig, Johannes Raab, Marion Woelbing, Claudia Falcke, Malte Winnacker, Cordt Zollfrank, Harald Strittmatter, Volker Sieber; "Biobased Chiral Semi-Crystalline or Amorphous High-Performance Polyamides and their Scalable Stereoselective Synthesis"; Nature Communications; 24.01.2020

Facts, background information, dossiers

  • biomaterials

More about TU München

  • News

    Safe from over- or underdosing

    Using a mixture of oil droplets and hydrogel, medical active agents can be not only precisely dosed, but also continuously administered over periods of up to several days. The active agents inside the active droplets are released at a constant rate, decreasing the risk of over- or underdosa ... more

    Emergence of calorie burning fat cells

    1.9 billion people in the world are overweight. Of these, 650 million people are obese, which increases the risk of secondary diseases such as high blood pressure or cancer. Professor Martin Klingenspor and his team at the Technical University of Munich (TUM) examine how our fat metabolism ... more

    Looking at the good vibes of molecules: a new method for label-free metabolic imaging

    Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy. The simultaneous visualization of dynamic alterations for classes of metabolites, such as carbohydrates and lipids, was an unmet need in biomedical research. Now, a novel imaging method developed by a ... more

  • q&more articles

    Diet, gut microbiota and host lipid metabolism

    Nature provides an enormous diversity of lipid molecules that originate from various pathways. Fatty acids are key modules for various lipids, including cell membrane lipids such as phospholipids or triacylglycerols, which are the major components of lipid droplets. Excess lipids or defects ... more

    Translation

    The structure of the big chemical and pharmaceutical companies has changed. Traditional centralised research departments conducting fundamental research have fallen victim to economic considerations. In exchange, young, dynamic start-up enterprises are increasingly brightening up the scene. ... more

  • Authors

    Dr. Josef Ecker

    Josef Ecker, born in 1978, studied biology at the University of Regensburg. He earned his doctorate in 2007, after which he researched as a postdoc at the University Hospital in Regensburg at the Institute of Clinical Chemistry. After several subsequent years in industry, working in executi ... more

    Prof. Dr. Arne Skerra

    Arne Skerra, born in 1961, studied chemistry at the Technical University of Darmstadt and obtained his doctoral degree as Dr. rer. nat. at the Gene Center of the Ludwig-Maximilians Univer­sity Munich in 1989. After staying at the MRC Laboratory of Molecular Biology in Cambridge, UK, and the ... more

    Dr. Thomas Letzel

    Thomas Letzel, born 1970, studied chemistry (1992–1998) at the TU Muenchen and the LMU Muenchen. He acquired his doctorate in 2001 with an environmental-analytical subject at the TU Muenchen, followed by a two years' postdoc stay at the Vrijen Universiteit Amsterdam. He qualified as a profe ... more

More about Fraunhofer-Institut IGB

  • News

    Producing vaccines without the use of chemicals

    Producing vaccines is a tricky task – especially in the case of inactivated vaccines, in which pathogens must be killed without altering their structure. Until now, this task has generally involved the use of toxic chemicals. Now, however, an innovative new technology developed by Fraunhofe ... more

    Spray drying: Perfect dosing thanks to drug capsules

    Instant coffee and powdered milk are produced by spray drying. Fraunhofer researchers have adapted this technique to the tricky question of incorporating insoluble substances in core-shell particles. The new method helps reduce the concentration of active ingredients in therapeutic medicati ... more

    Rapid test identifies disease pathogens

    At present, bacteria, fungi or viruses can generally only be detected with certainty by way of elaborate laboratory tests or animal experiments. The food and pharmaceutical industries would like to have faster tests to check their products. Fraunhofer researchers are therefore developing a ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE