q&more
My watch list
my.chemie.de  
Login  

News

Nanocontainers introduced into the nucleus of living cells

Christina Zelmer, University of Basel, and Evi Bieler, Swiss Nanoscience Institute

To enter into the cell nucleus (grey), the polymersomes (red) must selectively translocate across the nuclear membrane (dark blue) via the nuclear pore complexes (gaps in the membrane).

29-Jan-2020: An interdisciplinary team from the University of Basel has succeeded in creating a direct path for artificial nanocontainers to enter into the nucleus of living cells. To this end, they produced biocompatible polymer vesicles that can pass through the pores that decorate the membrane of the cell nucleus. In this way, it might be possible to transport drugs directly into the cell’s control center.

In order to combat diseases, different therapies strive to intervene in pathological processes that occur in the cell nucleus. Chemotherapies, for example, target biochemical reactions that are involved in the proliferation of cancer cells, while the objective of gene therapies is to insert a desired gene into the nucleus. Therefore, a challenge in the field of nanomedicine is to develop a reliable method of introducing active substances specifically into the cell nucleus.

Researchers at the University of Basel have now developed tiny nanocontainers that do just that in living cells. These nanocontainers can pass through the nuclear pore complexes that control the transport of molecules into and out of the cell nucleus. The development of these so-called polymersomes involved a highly interdisciplinary team of scientists from the Swiss Nanoscience Institute, the Biozentrum and the Department of Chemistry.

Entry ticket into the nucleus

Researchers used a trick to direct the artificial nanocontainers through the nuclear pore complexes: “These polymersomes, which are about 60 nanometers in size, are encapsulated by a flexible polymer membrane that mimics natural membranes,” explains chemist Professor Cornelia Palivan. “However, they are more robust than lipid vesicles and can be functionalized as needed.”

In addition, the researchers constructed the polymersomes with nuclear localization signals bound to them – giving them an entry ticket into the nucleus, so to speak. Cells use these signals to differentiate between molecules that need to be transported into the nucleus and those that should be kept out. In this way, the nuclear localization signals are used to disguise the artificial nanocontainers as permissible cargo.

Inspired by nature

“The presence of nuclear localization signals enables the polymersomes to hijack the cellular transport machinery that delivers cargo through the nuclear pore complexes,” explains Professor Roderick Lim. This property is similarly based on nature: “This strategy is also used by some viruses,” said the biophysicist.

The researchers were able to track the path of the polymersomes into the cell nucleus by filling them with different dyes and observing them using various microscopic techniques. This confirmed the successful transport of the artificial nanocontainers into the cell nucleus in vitro as well as in vivo within living cells. For future investigations, these dyes will be replaced by therapeutic agents.

“These findings show that the polymersomes we have developed make it possible to deliver artificial cargo very specifically into the cell nucleus. Indeed, nanocontainers without nuclear localization signals could not be detected in the cell nucleus,” according to first author Christina Zelmer, summarizing the study.

Original publication:
Christina Zelmer, Ludovit P. Zweifel, Larisa E. Kapinos, Ioana Craciun, Zekiye P. Güven, Cornelia G. Palivan and Roderick Y.H. Lim; "Organelle-specific targeting of polymersomes into the cell nucleus"; PNAS; 2020

Facts, background information, dossiers

  • nanocontainer
  • cells
  • cell nucleus
  • nanomedicine

More about Universität Basel

  • News

    Perturbation-free studies of single molecules

    Researchers of the University of Basel have developed a new method with which individual isolated molecules can be studied precisely – without destroying the molecule or even influencing its quantum state. This highly sensitive technique for probing molecules is widely applicable and paves ... more

    Virtual screening for active substances against the coronavirus

    The University of Basel is part of the global search for a drug to fight the rampant coronavirus. Researchers in the Computational Pharmacy group have so far virtually tested almost 700 million substances, targeting a specific site on the virus – with the aim of inhibiting its multiplicatio ... more

    Inner “clockwork” sets the time for cell division in bacteria

    Researchers at the Biozentrum of the University of Basel have discovered a “clockwork” mechanism that controls cell division in bacteria. In two publications, in “Nature Communications” und “PNAS”, they report how a small signaling molecule starts the “clock”, which informs the cell about t ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE