q&more
My watch list
my.chemie.de  
Login  

News

In the right place at the right time

Scientists decipher the activation chain of protein degradation

Kheewoong Baek © MPI für Biochemie

NEDD8 (yellow) configures the shape of the cullin-ring ligases (green and dark blue), UBE2D (light blue) and ubiquitin (yellow) so that the ubiquitin can be bound to the target substrate (red: IκBα).

17-Feb-2020: Proteins are molecular work horses in the cell that perform specific tasks, but it is essential that the timing of protein activities is exquisitely controlled. When proteins have fulfilled their tasks, degradation of these proteins will end processes that are unneeded or detrimental. To control timing, a label – called “ubiquitin” - is attached to unwanted proteins, marking the protein for degradation. Although complex molecular machineries were known to attach ubiquitin, how these machines carry out the labeling process was unknown. Researchers at MPIB, in collaboration with the University of Nevada Las Vegas, have revealed these mechanisms and published the results in the journal Nature.

Numerous cellular processes such as immune responses or cell multiplication depend on many different proteins working in sequence.  In order for the cell to function correctly, proteins must be degraded after their work is done. When disease-causing mutations block timely protein degradation, proteins could function at the wrong time, which can lead to diseases, including cancers, heart diseases and developmental disorders.

Controlling protein degradation

Cells “know” to break down proteins by marking unwanted proteins for degradation with another protein called "ubiquitin". The labelling process, known as ubiquitylation, is carried out by molecular machines, called E3 ligases. It is important that the E3 ligases themselves are switched on and off in the cells at the right place and at the right time. The "switch on" for about one third of all E3 ligases is a small protein that looks like ubiquitin but is called NEDD8.

NEDD8 at the control of turning off other proteins

Although the individual components of these protein degradation machineries were known, it was unclear how NEDD8 switches on the E3 ligases and enables tagging the target protein with ubiquitin. “This is especially important because there are drugs in anti-cancer clinical trials that block NEDD8, and some infectious bacteria manipulate NEDD8 to disturb cellular processes”, said Brenda Schulman, head of the "Molecular Machines and Signaling" department at MPIB. Schulman and her team have now deciphered the molecular mechanisms of this ubiquitylation. "We investigated the mode of action of an E3 turned on by NEDD8. We discovered how NEDD8 induces an E3 molecular machine to bring the ubiquitin tag to its targets. This is a key to switching proteins off at the right time, when no longer needed in a cell," said Schulman.

Using chemistry and cryo-electron microscopy, the scientists have succeeded in visualizing an important E3 ligase, turned on by NEDD8 and in the process of ubiquitin tagging a target. "To do this, we took a close look at each step in the tagging process. The natural process occurs within a fraction of a second, after which the molecular tagging machine falls apart. The process of capturing this normally short-lived state was particularly difficult" explains Kheewoong Baek, lead author of the study. E3 ligase molecular machines control many cellular processes.

“The deciphered mechanism not only explains the normal process and what goes wrong in some cancers where mutations prevent the E3 machine from working, but can also serve as a guide for developing therapies to tag unwanted proteins with ubiquitin. We hope that in the long-term this could help degrade proteins that cause cancer,” summarizes Schulman.

Original publication:
K. Baek, DT Krist, JR Prabu, S. Hill, M. Klügel, LM Neumaier, S. Gronau, G. Kleiger, BA Schulman; "NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly"; Nature; Februar 2020

Facts, background information, dossiers

  • protein degradation
  • proteins
  • ubiquitin
  • ubiquitylation
  • cryo-electron microscopy

More about MPI für Biochemie

  • News

    Biological machine produces its own building blocks

    The field of synthetic biology does not only observe and describe processes of life but also mimics them. A key characteristic of life is the ability to ability for replication, which means the maintenance of a chemical system. Scientists at the Max Planck Institute of Biochemistry in Marti ... more

    Decoding the structure of huntingtin

    Mutations on a single gene, the huntingtin gene, are the cause of Huntington's disease. They lead to an incorrect form of the correspondent protein. With the help of cryo-electron microscopy researchers from the Max Planck Institute of Biochemistry in Martinsried and Ulm University have now ... more

    Cellular power outage

    A common feature of neurodegenerative diseases such as Alzheimer's, Parkinson's or Huntington's disease are deposits of aggregated proteins in the patient's cells that cause damage to cellular functions. Scientists report that, even in normal cells, aberrant aggregation-prone proteins are c ... more

More about Max-Planck-Gesellschaft

  • News

    Immune boost against the corona virus

    The course of the corona pandemic will strongly depend on how quickly medications or vaccines against the SARS co-virus 2 can be developed. In at least one Phase III study, researchers want to investigate whether the vaccine candidate VPM1002, originally developed against tuberculosis by sc ... more

    Sustainable use of CO2 using a modified bacterium

    A team of scientists from the Max Planck Institute of Molecular Plant Physiology in Potsdam-Golm, led by Dr. Arren Bar-Even, has succeeded in reprogramming the diet of the bacterium E. coli in such a way that it can use formic acid or methanol as its sole source of nutrition. These simple o ... more

    Antibodies: the body’s own antidepressants

    If the immune system attacks its own body, it can often have devastating consequences: autoantibodies bind to the body’s structures, triggering functional disorders. The receptors for glutamate, a neurotransmitter, can also become the target of autoantibodies. Researchers at the Max Planck ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE