21-Feb-2020 - Max-Planck-Institut für Kolloid- und Grenzflächenforschung

"Make two out of one" - Division of Artificial Cells

Scientists uncover a novel and generic mechanism for the division of artificial cells into two daughter cells

The success of life on earth is based on the amazing ability of living cells to divide themselves into two daughter cells. During such a division process, the outer cell membrane has to undergo a series of morphological transformations that ultimately lead to membrane fission. Scientists at the Max Planck Institute of Colloids and Interfaces, Potsdam, and at the Max Planck Institute for Polymer Research, Mainz, have now achieved unprecedented control over these shape transformations and the resulting division process by anchoring low densities of proteins to the artificial cell membranes.

All living organisms on earth are built up from individual cells. Furthermore, the proliferation and growth of these organisms is based on the ability of each cell to divide into two daughter cells. During the division process, the cell membrane, which provides the outer boundary of the cell, has to undergo a series of morphological transformations that ultimately lead to the fission of the cell membrane. To control this process, today’s cells rely on highly specialized protein complexes, which are driven by ATP hydrolysis. It turns out, however, that controlled division can be achieved in a much simpler way, as researchers at the Max Planck Institute of Colloids and Interfaces, Potsdam, and at the Max Planck Institute for Polymer Research, Mainz, have recently demonstrated for artificial cells. These cells are provided by giant lipid vesicles, which have the size of a typical animal cell and are bounded by a single lipid membrane, which provides a robust and stable barrier between the interior and exterior aqueous solution. This compartmentalization is a crucial feature of cell membranes as well.  

In addition, vesicle and cell membranes have essentially the same molecular architecture and consist of molecular bilayers with two molecular leaflets that define the two sides of the membranes: the inner leaflet is exposed to the interior, the outer leaflet to the exterior solution. On the one hand, artificial cells with a wide membrane neck remain stable for days and weeks. On the other hand, as soon as the neck has closed down the membrane generates a constriction force onto this neck that cleaves the neck and divides the artificial cell into two daughter cells.

Constriction forces generated by membrane asymmetry

In addition to demonstrating the division of artificial cells, the researchers around Reinhard Lipowsky also identified the novel mechanism, by which this constriction force can be controlled in a systematic manner. To do this, they designed membranes whose inner and outer leaflets differ in their molecular composition by exposing the outer leaflets to a variable concentration of protein. This asymmetry between the two leaflets generates a preferred or spontaneous curvature that determines the shape of the artificial cells. Furthermore, once a closed membrane neck has been formed, the spontaneous curvature generates a local constriction force that leads to the division of these cells. Thus, quite surprisingly, the complete division of the artificial cells is driven by the mechanical properties of the membranes: the force that divides the membrane neck arises directly from the asymmetry of the bilayer membranes.

Versatile module for synthetic biology

In this way, a simple and generic mechanism for the division of artificial cells has been identified. This mechanism does not depend on the precise nature of the molecular interactions that generate the bilayer asymmetry and the associated spontaneous curvature, as has been explicitly demonstrated by using different types of proteins. Furthermore, the used density of the membrane-bound proteins was rather low which leaves ample space for other proteins to be accommodated on the artificial cell membranes. Therefore, the membrane-protein systems introduced here provide a promising and versatile module for the bottom-up approach to synthetic biology. Finally, the division process of artificial cells described here also sheds new light on cell division in vivo. Even though all modern cells seem to rely on a complex protein machinery, our cellular ancestors may have used much simpler mechanisms for their division as Jan Steinkühler, the first author of the study, explains: “Certain bacteria can also divide without the known protein machinery. It has already been speculated that membrane mechanics might play an important role in the latter division processes. Our study demonstrates that mechanically controlled cell division is indeed possible."

Facts, background information, dossiers

  • cell division
  • artificial cells

More about MPI für Kolloid- und Grenzflächenforschung

  • News

    First programmable photocatalyst developed

    Researchers at the Max Planck Institute of Colloids and Interfaces have developed a sustainable and "smart photocatalyst". The special feature: as a so-called smart material, it can distinguish between the colors of light (blue, red and green) and, in response, enables a specific chemical r ... more

    In milliseconds from polluted to clear water

    Researchers at the Max Planck Institute of Colloids and Interfaces developed a membrane that is composed of a bundle of nanometer-sized tubes. They used it as a nanoreactor to convert water marked with methylene blue into clear water in milliseconds using sunlight as a driver. ‘Running reac ... more

    Green Chemistry: Sustainable p-xylene production

    Lemonade, juice and mineral water often come in PET bottles. While these are practical and functional, their production is complex and not necessarily sustainable. The starting material for terephthalic acid, which is used to produce saturated polyesters such as PET (Polyethylene terephthal ... more

  • q&more articles

    With Light in the Fight against Malaria

    Malaria represents a global threat to health, which is difficult to keep under control. Amongst more than 200 million sufferers, over 500,000 die each year of the disease, with the risk of a fatal outcome being particularly high in children [1]. more

  • Authors

    Dr. Daniel Kopetzki

    born 1983, studied chemistry at the University of Regensburg and received his doctorate from the Max Planck Institute of Colloids and Interfaces in Potsdam, in the Department of Colloid Chemistry. Since Sept. 2011, he has been working as a post-doctoral fellow for Prof. Dr. Seeberger at the ... more

    Prof. Dr. Peter Seeberger

    born 1966, studied chemistry at the University of Erlangen-Nuremberg, and received his doctorate in biochemistry from the University of Colorado. After holding a post-doctorate position at the Sloan-Kettering Institute for Cancer Research in New York City, he was Assistant Professor and Fir ... more

More about MPI für Polymerforschung

  • News

    The Power of light: How light can be used to control processes in synthetic cells

    Synthetic – i. e. artificially produced - cells can imitate certain functions of biological cells. These synthetic cells could open up new medical possibilities in the future. In laboratories, such cells can already help in chemical processes on a miniature scale as "mini-reactors". Scienti ... more

    It’s all about the sausage

    The right crack of the sausage is, not least, a matter of physics. A team from the Max Planck Institute for Polymer Research in Mainz has investigated how the properties of plant proteins influence the mouthfeel of vegetarian and vegan sausages. Using the findings this revealed, the first c ... more

    Green wave for “gene cabs”

    Viruses help researchers to introduce genes into cells so that they can produce active pharmaceutical ingredients, for example. Special peptides stimulate the process. Until now, however, the efficiency increase was poorly understood. A team of researchers from the MPI for Polymer Research, ... more

More about Max-Planck-Gesellschaft

  • News

    Neuroscientists illuminate how brain cells deep in the cortex operate in freely moving mice

    How can we see what neurons deep in the cortex are doing during behavior? Researchers at the Max Planck Institute for the Neurobiology of Behavior - caesar (MPINB) have developed a miniature microscope small enough to be carried on the head of a freely moving mouse and capable of measuring ... more

    Measuring Organ Development

    Researchers from Dresden and Vienna reveal link between connectivity of three-dimensional structures in tissues and the emergence of their architecture to help scientists engineer self-organising tissues that mimic human organs. Organs in the human body have complex networks of fluid-filled ... more

    Back to the Future of Photosynthesis

    The central biocatalyst in Photosynthesis, Rubisco, is the most abundant enzyme on earth. But how did Rubisco evolve, and how did it adapt to environmental changes during Earth’s history? By reconstructing billion-year-old enzymes, a team of Max Planck Researchers has deciphered one of the ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: