q&more
My watch list
my.chemie.de  
Login  

News

Virtual screening for active substances against the coronavirus

University of Basel, Computational Pharmacy

Researchers have tested more than 680 million substances on the computer to virtually test one of the virus’ important proteins, the central protease.

11-Mar-2020: The University of Basel is part of the global search for a drug to fight the rampant coronavirus. Researchers in the Computational Pharmacy group have so far virtually tested almost 700 million substances, targeting a specific site on the virus – with the aim of inhibiting its multiplication. Due to the current emergency, the first results of the tests will be made available to other research groups immediately.

Over the past few weeks, the research group in the Department of Pharmaceutical Sciences, led by Professor Markus Lill, has been working with computer-aided methods to identify possible new drugs to combat the current coronavirus outbreak and similar epidemics in the future. In the process, the researchers have tested, albeit virtually, more than 680 substances on one of the virus’s key proteins: its central protease.

This “virtual screening” has already identified several interesting substances that have the potential to inhibit the virus’s critical enzyme – and thus its further multiplication. “Even if the complete development of a drug to fight this particular coronavirus is likely to exceed the duration of the current epidemic, it is important to develop drugs for future coronaviruses. This will make it possible to nip health crises like this one in the bud in the future,” says Lill.

Test results made public

In light of the current crisis, the group took an unusual decision by immediately making the test results publicly available in the form of an open-source preprint. The publication was consulted more than 3,000 times during the first 48 hours alone.

The Basel researchers hope that a larger number of research groups worldwide will test their proposals on the virus and initiate further trials. Normally, when it comes to drug design, the molecules of interest would be experimentally tested with other groups before the results were patented and published. The main focus of other ongoing coronavirus trials is currently on the usability of existing antiviral drugs or the realignment of other drugs.

Original publication:
André Fischer, Manuel Sellner, Santhosh Neranjan, Markus A. Lill, and Martin Smiesko; "Inhibitors for Novel Coronavirus Protease Identified by Virtual Screening of 687 Million Compounds"; ChemRxiv; 2020

Facts, background information, dossiers

  • coronaviruses
  • drug screening

More about Universität Basel

  • News

    Perturbation-free studies of single molecules

    Researchers of the University of Basel have developed a new method with which individual isolated molecules can be studied precisely – without destroying the molecule or even influencing its quantum state. This highly sensitive technique for probing molecules is widely applicable and paves ... more

    Inner “clockwork” sets the time for cell division in bacteria

    Researchers at the Biozentrum of the University of Basel have discovered a “clockwork” mechanism that controls cell division in bacteria. In two publications, in “Nature Communications” und “PNAS”, they report how a small signaling molecule starts the “clock”, which informs the cell about t ... more

    Kiss and run: How cells sort and recycle their components

    What can be reused and what can be disposed of? Cells also face this tricky task. Researchers from the Biozentrum of the University of Basel have now discovered a cellular machine, called FERARI, that sorts out usable proteins for recycling. In Nature Cell Biology, they explain how FERARI w ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE