q&more
My watch list
my.chemie.de  
Login  

News

One Drug, Three Action Modes

Chemotherapy and photodynamic therapy combined in a single drug to fight resistant cancers

© Wiley-VCH

17-Mar-2020: Clinicians combat the drug resistances of some cancer types by using a combination of different drugs. To make this approach more effective, chemists have designed a chemical conjugate that can simultaneously attack several cellular targets using different modes of action. Such a single-drug therapy would increase the chances of killing all cancer cells, the authors state in the journal Angewandte Chemie.

The most frequently clinically applied chemotherapeutic drug is cisplatin, a metal complex based on the platinum(II) ion. The drug’s mode of action is binding to the DNA in the tumor cells, where it distorts the DNA structure and ultimately triggers cell death. Other chemicals facilitate the interaction of cisplatin with DNA, and they are often combined with cisplatin for chemotherapy. The photodynamic therapy (PDT) approach, in contrast, relies on the activation of a metal complex by laser light. A reactive form of oxygen is formed, which interferes with cell metabolism, triggering cell death.

“In clinical protocols, each drug is administered separately and may not reach the tumor at the same time or at a fixed ratio,” says Prof. Gilles Gasser from the Paris Sciences et Lettres (PSL) University in Paris, France, who is one of the leading authors of the study. His group, in collaboration with Prof. Dan Gibson’s group from Hebrew University, Jerusalem, Israel, combined cisplatin, phenylbutyrate, which is a chemical enhancer for cisplatin, and a PDT drug, which is a metal complex based on ruthenium(II), into a single compound called Ru-Pt. The idea was that the three drugs in conjunction could travel the bloodstream intact and enter their target tumor cells, which would reduce side effects and the need to adjust the dosages.

The scientists have designed the phototherapeutic Ru(II) half of Ru-Pt so that it can be excited with laser light in the deep red section of the wavelength spectrum, which penetrates deeply in the biological tissue. The cisplatin and phenylbutyrate containing half of Ru-Pt was designed as a prodrug, which would be activated by cellular components inside the cell. Both therapeutic components were attached to each other by a molecular spacer. “The correct spacer length was critical to ensure that both drug compounds will not interfere with each other, but the molecule remains small, water-soluble, and able to travel across membranes,” Gasser says.

The researchers added Ru-Pt to some normal and cancer cell lines and found that Ru-Pt was significantly more efficient in killing cancer cells than the single compounds Ru(II) and Pt(IV). The authors also reported that the irradiated samples had significantly higher tumor-killing rates, which means that the specific drug activation in tumor tissue is possible. And finally, Ru-Pt had a ten times higher efficiency for drug-resistant cell lines than the single reagents. These results demonstrate the high potential of multimodal drugs for developing more selective and effective drugs that have fewer side effects and allow for a simple handling for an effective cancer treatment.

Original publication:
Gilles Gasser et al.; "A Multi‐action and Multi‐target RuII–PtIV Conjugate Combining Cancer‐Activated Chemotherapy and Photodynamic Therapy to Overcome Drug Resistant Cancers "; Angewandte Chemie International Edition; 2020

Facts, background information, dossiers

  • combination drug therapy
  • cancer
  • cisplatin

More about Angewandte Chemie

  • News

    Staining Cycles with Black Holes

    In the treatment of tumors, microenvironment plays an important role. It often contains immune cells that are so changed that they promote tumor growth. In the journal Angewandte Chemie, scientists have introduced a method by which cell samples from tumors and their surroundings can rapidly ... more

    Amplification and imaging of microRNA as a biomarker to detect tumor development

    A good indicator of dysregulation in live cells is a change in their RNA expression. MicroRNA (miRNA), a special type of RNA, is considered a biomarker for carcinogenic cells. A team of scientists from China has found a way to amplify miRNA in live tumor cells for bioimaging. As they report ... more

    Making Puffer Fish Toxin in a Flask

    In Japan, puffer fish is considered a delicacy, but the tickle to the taste buds comes with a tickle to the nerves: fugu contains tetrodotoxin, a strong nerve toxin. In low doses, tetrodotoxin is shown in clinical trials to be a replacement for opioids for relieving cancer related pain. In ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE