30-Mar-2020 - Technische Universität München

Benzene in cherry flavor - where it comes from and how to avoid it?

Flavorings containing benzaldehyde can develop benzene under the influence of light

In 2013, the Stiftung Warentest found harmful benzene in drinks with cherry flavor. But how did the substance get into the drinks? Was the source benzaldehyde, an essential component of the cherry flavoring? And if so, how could the problem be solved? A new study by the Leibniz-Institute for Food Systems Biology and the Technical University of Munich (TUM) is now able to answer these questions.

According to the German Federal Institute for Risk Assessment (Bundesinstitut für Risikobewertung, BfR), benzene is mainly absorbed by our bodies via the air we breathe. Non-smokers take in an average of 200 micrograms of benzene per day. Smokers take in around ten times as much. But our food can also contain traces of this harmful substance and thus contribute to the exposure.

When the Stiftung Warentest examined soft drinks in 2013, they came across small quantities of benzene. One drink contained just under 4.6 micrograms of benzene per liter. For comparison: In Germany, one liter of drinking water is allowed to contain only 1 microgram of the substance. At that time, experts at the Stiftung Warentest supposed that the odorant benzaldehyde was the cause of the benzene contaminations observed.

“As our research is specialized on odorants, we followed up on this supposition in the interest of consumer protection and at the suggestion of the German Association of the Flavor Industry (Deutscher Verband der Aromenindustrie, DVAI),” says lead author Stephanie Frank from the Leibniz-Institute for Food Systems Biology at the Technical University of Munich.

To do this, the team of scientists first established a reliable, highly sensitive quantitation method of benzene. Then, they carried out experiments with various model solutions which contained benzene-free benzaldehyde. The team also examined cherry juice produced under laboratory conditions, to which they also added the pure odorant.

Light is the crucial factor

“Our findings confirm the assumption of the Stiftung Warentest and also explain how the formation of benzene occurs. An important requirement in solving the problem in the long term,” reports food chemist Stephanie Frank.

As the study proves, the longer the odorant is exposed to light, the more benzaldehyde is converted into benzene. But the light intensity is also decisive. In contrast, the pH value, the oxygen content, the presence of metal ions or the temperature did not affect the benzene production in the model solutions.

To the surprise of the researchers, no benzene was formed in the cherry juice produced under laboratory conditions during light exposure. Frank reasons that it is possible that the dark red color of the drink acts as a light protection filter and prevents the formation of benzene. The benzene found in a few soft drinks sold commercially is probably the result of added cherry flavoring which has already been contaminated with benzene.

“This is why we must be sure to protect flavorings containing benzaldehyde from light, from when the substance is produced to when the product is sold, for example, by storing them in amber glass vials,” recommends Peter Schieberle, Professor for Food Chemistry at the Technical University of Munich.

Facts, background information, dossiers

  • benzene
  • Benzaldehyde
  • flavors
  • soft drinks
  • cherry juice

More about TUM

  • News

    Molecular monitoring of RNA regulation

    The better we understand cellular processes such as RNA regulation, the better molecular therapies can be developed. Until now, it has been especially difficult to track the regulation of non-coding RNA, which is RNA that is not further converted into proteins. A research team from the Tech ... more

    Synthetic peptides may suppress formation of harmful deposits

    In Alzheimer's disease, the degeneration of brain cells is linked to formation of toxic protein aggregates and deposits known as amyloid plaques. Similar processes play an important role also in type 2 diabetes. A research team under the lead of the Technical University of Munich has now de ... more

    First electric nanomotor made from DNA material

    A research team led by the Technical University of Munich (TUM) has succeeded for the first time in producing a molecular electric motor using the DNA origami method. The tiny machine made of genetic material self-assembles and converts electrical energy into kinetic energy. The new nanomot ... more

  • q&more articles

    Vital wheat gluten, a protein with potential

    For almost every one of the 17 goals that the 2030 Agenda for Sustainable Development sets out, food and its value chain plays an important role [1]. With this agenda, the United Nations has created a global framework for action that addresses all social players. more

    Biobased raw material flows of the future

    Anthropogenic climate change and the rising world population, in combination with increasing urbanization, poses global challenges to our societies that can only be solved by technological advancement. The direct biotechnological use of greenhouse gases, including residual biomass flows fro ... more

    Taste and aroma boost in the mouth

    The food trend towards healthy snacks is continuing. Snacks made from freeze-dried fruit meet consumer expectations of modern and high-quality food. However, freeze drying of whole fruits requires long drying times and substantially reduces sensorial quality, which is unappealing to consumers. more

  • Authors

    Prof. Dr. Thomas Becker

    Thomas Becker, born in 1965, studied Technology and Biotechnology of Food at the Technical University of Munich (TUM). He then worked as a project engineer at the company Geo-Konzept from 1992 to 1993. In 1995, he received his PhD from the TUM. From 1996 to 2004 he was Deputy Head of Depart ... more

    Monika C. Wehrli

    Monika Wehrli, born in 1994, graduated from the ETH Zurich with a major in food process engineering. Since 2018 she has been working as a researcher at the Technical University of Munich, Germany, at the Chair of Brewing and Beverage Technology, where she pursues her doctorate in the field ... more

    Prof. Dr. Thomas Brück

    Thomas Brück, born in 1972, obtained his B.Sc. in chemistry, biochemistry and management science from Keele University, Stoke on Trent. Additionally, he holds an M.Sc. in molecular medicine from the same institution. In 2002, Thomas obtained his Ph.D. in Protein Biochemistry from Imperial C ... more

More about Leibniz-LSB@TUM

  • News

    Odorant Analysis 2.0

    A research team from the Leibniz Institute for Food Systems Biology at the Technical University of Munich (LSB) has succeeded in automating an established method for the gentle, artifact-avoiding isolation of volatile food ingredients. As the team's current comparative study now shows, auto ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: