07-Apr-2020 - Max-Planck-Institut für Polymerforschung

When ions rattle their cage

How the investigation of ion oscillations can lead to better batteries

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or negatively charged ions, which can move freely in water: An electrolyte solution is created. Electrical fields allow these charged particles to be transported within the solution and thus provide an electric current. These currents are the basis for battery technology or energy storage in living cells.

To increase currents within batteries, typically the number of dissolved ions is increased. In this case, however, ions more frequently collide with other ions in the liquid, which leads to an increase of the electrical resistance.

To achieve higher currents in electrolyte solutions, scientists at the Max Planck Institute of Polymer Research headed by Dr. Johannes Hunger and Dr. Yuki Nagata (department of Prof. Dr. Mischa Bonn) have now investigated electrolyte solutions using both, experiments and computer simulations. In collaboration with scientists from Berlin and Graz, they have experimentally investigated the microscopic motion of ions. They were able to show that the ions - before they can move in the liquid - are first trapped by the surrounding molecules in a kind of cage and oscillate back and forth within this cage, similar to a swing. This ultra-fast motion, which occurs between 1000 billion and 10000 billion times per second, could be analyzed with the help of ultrashort laser pulses.

The scientists showed that the maximum deflection of the oscillating ions - similar to the length of a swing's chain – is related to the maximum possible electric current that can be obtained in the electolyte. These experimental findings were confirm using computer simulations. Thus, the researchers could solve a riddle that is more than 100 years old: The resistance of an electrolyte solution depends not only on the number of ions but also on their size and shape. The scientists have now shown that different resistances of differently-shaped and -sized ions can be traced to different cages and cage vibrations.

Such molecular insights into the motion of ions are essential to understand the transport of charges in electrolytes. The experiments show that the stronger the ions vibrate in their cage, the better an electrolyte solution conducts electricity: The stronger the ions in the cage vibrate, the more they rattle their cage and the easier they can escape from this cage.

Facts, background information, dossiers

More about MPI für Polymerforschung

  • News

    Green wave for “gene cabs”

    Viruses help researchers to introduce genes into cells so that they can produce active pharmaceutical ingredients, for example. Special peptides stimulate the process. Until now, however, the efficiency increase was poorly understood. A team of researchers from the MPI for Polymer Research, ... more

    More beer in the glass with physics

    While foam is certainly desirable in the bathtub or on beer, preventing foam - for example in industrial processes - is a much-discussed topic. Often, oils or particles are added to liquids to prevent foaming. If these are harmful to health or the environment, they must be removed again usi ... more

    Molecules in an egg carton

    The production of high-quality monolayers – i.e. only one molecule high - is highly relevant for optoelectronic components such as organic light-emitting diodes used today in modern cell phones: Both lifetime and energy efficiency can be increased. Scientists at the Max Planck Institute for ... more

More about Max-Planck-Gesellschaft

  • News

    Cell-culture breakthrough: Advanced “mini brains” in the dish

    “Outer Radial Glia” (oRG) cells are nervous system stem cells that are instrumental for the development of the human cortex and have been challenging to produce in the lab. Now, a team of Max Planck researchers from Berlin succeeded in generating brain organoids that are enriched with these ... more

    Green wave for “gene cabs”

    Viruses help researchers to introduce genes into cells so that they can produce active pharmaceutical ingredients, for example. Special peptides stimulate the process. Until now, however, the efficiency increase was poorly understood. A team of researchers from the MPI for Polymer Research, ... more

    Microparticles with feeling

    An international research team headed by the Max Planck Institute for Marine Microbiology in Bremen, Aarhus University and the Science for Life Lab in Uppsala has developed tiny particles that measure the oxygen concentration in their surroundings. In this way, they can track fluid flow and ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: