07-Apr-2020 - Max-Planck-Institut für Polymerforschung

When ions rattle their cage

How the investigation of ion oscillations can lead to better batteries

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or negatively charged ions, which can move freely in water: An electrolyte solution is created. Electrical fields allow these charged particles to be transported within the solution and thus provide an electric current. These currents are the basis for battery technology or energy storage in living cells.

To increase currents within batteries, typically the number of dissolved ions is increased. In this case, however, ions more frequently collide with other ions in the liquid, which leads to an increase of the electrical resistance.

To achieve higher currents in electrolyte solutions, scientists at the Max Planck Institute of Polymer Research headed by Dr. Johannes Hunger and Dr. Yuki Nagata (department of Prof. Dr. Mischa Bonn) have now investigated electrolyte solutions using both, experiments and computer simulations. In collaboration with scientists from Berlin and Graz, they have experimentally investigated the microscopic motion of ions. They were able to show that the ions - before they can move in the liquid - are first trapped by the surrounding molecules in a kind of cage and oscillate back and forth within this cage, similar to a swing. This ultra-fast motion, which occurs between 1000 billion and 10000 billion times per second, could be analyzed with the help of ultrashort laser pulses.

The scientists showed that the maximum deflection of the oscillating ions - similar to the length of a swing's chain – is related to the maximum possible electric current that can be obtained in the electolyte. These experimental findings were confirm using computer simulations. Thus, the researchers could solve a riddle that is more than 100 years old: The resistance of an electrolyte solution depends not only on the number of ions but also on their size and shape. The scientists have now shown that different resistances of differently-shaped and -sized ions can be traced to different cages and cage vibrations.

Such molecular insights into the motion of ions are essential to understand the transport of charges in electrolytes. The experiments show that the stronger the ions vibrate in their cage, the better an electrolyte solution conducts electricity: The stronger the ions in the cage vibrate, the more they rattle their cage and the easier they can escape from this cage.

Facts, background information, dossiers

More about MPI für Polymerforschung

  • News

    The Power of light: How light can be used to control processes in synthetic cells

    Synthetic – i. e. artificially produced - cells can imitate certain functions of biological cells. These synthetic cells could open up new medical possibilities in the future. In laboratories, such cells can already help in chemical processes on a miniature scale as "mini-reactors". Scienti ... more

    It’s all about the sausage

    The right crack of the sausage is, not least, a matter of physics. A team from the Max Planck Institute for Polymer Research in Mainz has investigated how the properties of plant proteins influence the mouthfeel of vegetarian and vegan sausages. Using the findings this revealed, the first c ... more

    Green wave for “gene cabs”

    Viruses help researchers to introduce genes into cells so that they can produce active pharmaceutical ingredients, for example. Special peptides stimulate the process. Until now, however, the efficiency increase was poorly understood. A team of researchers from the MPI for Polymer Research, ... more

More about Max-Planck-Gesellschaft

  • News

    Neuroscientists illuminate how brain cells deep in the cortex operate in freely moving mice

    How can we see what neurons deep in the cortex are doing during behavior? Researchers at the Max Planck Institute for the Neurobiology of Behavior - caesar (MPINB) have developed a miniature microscope small enough to be carried on the head of a freely moving mouse and capable of measuring ... more

    Measuring Organ Development

    Researchers from Dresden and Vienna reveal link between connectivity of three-dimensional structures in tissues and the emergence of their architecture to help scientists engineer self-organising tissues that mimic human organs. Organs in the human body have complex networks of fluid-filled ... more

    Back to the Future of Photosynthesis

    The central biocatalyst in Photosynthesis, Rubisco, is the most abundant enzyme on earth. But how did Rubisco evolve, and how did it adapt to environmental changes during Earth’s history? By reconstructing billion-year-old enzymes, a team of Max Planck Researchers has deciphered one of the ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: