q&more
My watch list
my.chemie.de  
Login  

News

Repair instead of renew: damaged powerhouses of cells have their own ‘workshop mode’

Molecular repair pathway for cellular energy production found

(c) Alexandra Kukat

Image of a cell: the cell nucleus is blue, the mitochondria structure red, and the mitochondrial DNA green.

08-Apr-2020: If the energy supply of a cell is disturbed by damage, it can protect itself from functional losses and repair itself in a kind of workshop mode. That is the result of a new study conducted by molecular biologist Professor Dr. Aleksandra Trifunovic and Dr. Karolina Szcepanowska as a leading scientist in her team, at the CECAD Cluster of Excellence in Aging Research at the University of Cologne.

Trifunovic works on so-called mitochondria, the powerhouses of every cell. The tasks of mitochondria include very basic processes such as the constant energy supply of the cell. The power machinery in mitochondria consists of five components, the so-called complexes I–V. In them, the food we eat is ultimately converted into energy for the cell. If the cellular energy supply is no longer guaranteed due to disturbances in signalling processes, this has serious consequences for the entire organism, and can cause diseases.

‘In our most recent work, we have discovered a rescue route that enables cells to repair damage of a particularly sensitive part of complex I’, said Trifunovic. ‘Repairing something is a far more energy-efficient self-help mechanism compared to the effort that would be required to completely destroy and rebuild this entire complex.’

The specific rescue route Trifunovic identified also acts as a safety valve for the cell. If the rescue route becomes active, the dysfunctional component quickly switches to a shutdown mode and ‘goes to the workshop’. This way, the cells prevent harmful reactive oxygen species from being produced and released in the powerhouse engine. Trifunovic remarked: ‘So far, very little is known about how this machinery is maintained and regulated. Our results shed light on this process and allow us to explore further therapeutic possibilities.’

As a molecular biologist, Trifunovic is already developing further research questions. In addition to the general novelty of the entire mechanism, she was particularly surprised to see that it is often better for the organism to keep some powerhouse machine components running despite damage, and not to put all damaged components into ‘workshop mode’ at the same time or to dismantle them completely. It is possible that functions of individual components, which go beyond energy supply, also play a role. Trifunovic would like to further investigate the scope and versatility of the molecular repair pathway she discovered in order to identify its full potential for possible therapies.

Trifunovic insisted that this study would not be possible without work of Dr. Karolina Szczepanowska, who was a driving force behind this project, and important collaboration with groups from our and other universities.

Original publication:
Karolina Szczepanowska et al.; "A salvage pathway maintains highly functional respiratory complex I"; Nature Communications; 2020

Facts, background information, dossiers

  • cells
  • mitochondria

More about Uni Köln

  • News

    A 40-year-old catalyst unveils its secrets

    “Titanium silicalite-1” (TS-1) is not a new catalyst: It has been almost 40 years since its development and the discovery of its ability to convert propylene into propylene oxide, an important basic chemical in the chemical industry. Now, by combining various methods, a team of scientists f ... more

    The smell of food controls cellular recycling and affects life expectancy

    The smell of food affects physiology and aging. That is the result of research conducted on the model organism of the roundworm by a research team led by Professor Thorsten Hoppe at the Cluster of Excellence for Aging Research (CECAD). Surprisingly, this relationship is due to a single pair ... more

    System that reduces neurodegeneration in Huntington’s disease

    The neuroscientist Dr David Vilchez and his team at CECAD, the University of Cologne’s Cluster of Excellence for Aging Research, have made an important step towards understanding the mechanisms that cause the neurodegenerative disorder Huntington’s disease. Particularly, they identified a s ... more

  • q&more articles

    How gold plasma can make hidden structures visible

    In recent years, microcomputed tomography (μCT) has become a standard method in many medical, scientific and industrial fields. This non-invasive technique enables three-dimensional imaging of a wide variety of structures. However, a new combination of methods now makes it possible to visua ... more

  • Authors

    Peter T. Rühr

    Peter T. Rühr, born in 1988, studied biology with a focus on the head morphology of primary wingless insects at the Zoological Research Museum Alexander Koenig and at the University of Bonn, where he received his master's degree in 2017. Since 2018 he has been working at the University of C ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE