22-Apr-2020 - Technische Universität Wien

New preparation processes for super-plastics

Water replaces toxins: Green production of plastics using hydrothermal synthesis

Although organic plastics are not harmful to the environment themselves, toxic substances are often used during their synthesis. TU Wien shows - there is another way.

Many materials that we use every day are not sustainable. Some are harmful to plants or animals, others contain rare elements that will not always be as readily available as they are today. A great hope for the future is to achieve different material properties by using novel organic molecules. Organic high-performance materials containing only common elements such as carbon, hydrogen or oxygen could solve our resource problem - but their preparation is usually anything but environmentally friendly. Often very toxic substances are used during the synthesis of such materials, even if the end product itself is non-toxic.

At TU Wien a different approach is taken: In the research group for organic high-performance materials, led by Prof. Miriam Unterlass at the Faculty of Technical Chemistry at TU Wien, a completely different synthetic method is employed. Instead of toxic additives, only hot water is used. A decisive breakthrough has now been achieved: two important classes of polymers could be generated using the new process - an important step towards industrial application of the new method.

High pressure and high temperature

"We are investigating so-called hydrothermal synthetic processes," says Miriam Unterlass. "We are working at high pressure and high temperature in the order of 17 bar and 200 °C. As it turns out, under such extreme conditions it is possible to avoid using toxic solvents that would otherwise be necessary for producing these polymers. The term "green chemistry" refers to those methods that allow to render not only the end products but also the synthetic processes in the chemical industry more environmentally friendly.

Already several years ago, Miriam Unterlass achieved first positive results with this technology. "We succeeded, for example, in producing organic dyes, or polyimides - plastics that are indispensable in the aviation and electronics industries. This also generated a great deal of interest from the industry," says Unterlass. "But now we have taken an important step forward: We were able to synthesize different polymer examples from two highly interesting classes of plastics - polybenzimidazoles and pyrron polymers."

New preparation processes for super-plastics

Polybenzimidazoles are, for example, nowadays used as membranes in fuel cells since they are acid-resistant even at high temperatures and can also conduct protons. Polybenzimidazole fibers are also found in fireproof clothing such as the protective suits of firefighters. " That already shows that they are real super-plastics," says Unterlass.

Pyrron polymers, on the other hand, have particularly interesting electronic properties in addition to their excellent stability. Therefore, they are suitable for applications such as field-effect transistors or as powerful and highly resistant electrode material in batteries.

"The fact that these polymers can be prepared using our hydrothermal process is remarkable since under usual conditions the chemical reactions for generating these plastics are sensitive to water", says Miriam Unterlass. "This shows how promising our method is for a wide range of applications."

The new fabrication method for the two new material classes has already been patented, with the assistance of the research and transfer support of the TU Wien. The electrochemical analysis of the products was carried out in cooperation with Imperial College London.

  • M. J. Taublaender, S. Mezzavilla, S. Thiele, F. Glöcklhofer and M. M. Unterlass; "Hydrothermal Generation of Conjugated Polymers on the Example of Pyrrone Polymers and Polybenzimidazoles"; Angew. Chem. Int. Ed.; 2020, accepted.

Facts, background information, dossiers

More about TU Wien

  • News

    A quantum wave in two crystals

    Particles can move as waves along different paths at the same time – this is one of the most important findings of quantum physics. A particularly impressive example is the neutron interferometer: neutrons are fired at a crystal, the neutron wave is split into two portions, which are then s ... more

    Climate protection: CO₂ turned into methanol

    For reasons of climate protection, carbon dioxide must not be released into the atmosphere. Wherever the formation of carbon dioxide cannot be prevented, it should be captured and converted into other substances. The best possible solution is creating substances that have value and can be s ... more

    Microscaffolds – a New Strategy in Tissue Engineering

    Until now, there have been two completely different approaches to producing artificial tissue. At TU Wien, a third approach has now been developed that combines the advantages of both. It is an age old dream of medicine: if arbitrary kinds of tissue could be produced artificially from stem ... more

  • q&more articles

    The search for APIs in the genome of fungi

    Fungi hold enormous potential to discover new active pharmaceutical ingredients (APIs) and valuable substances, for example antibiotics, pigments and raw materials for biological plastics. While conventional discovery methods are reaching their limits, recent developments in bioinformatics ... more


    The aim of personalized medicine (or precision medicine) is to take patients’ personal features into consideration as much as possible for their medical treatment, thereby going beyond the functional diagnosis of the disease. A promising concept that is gaining ever more attention and showi ... more

  • Authors

    Dr. Christian Derntl

    Christian Derntl, born in 1983, completed his diploma studies in microbiology and immunology at the University of Vienna. In 2014, he completed his PhD study in technical chemistry with distinction at TU Wien. The topic of his thesis was the regulation of cellulases in the fungus Trichoderm ... more

    Sarah Spitz

    Sarah Spitz, born in 1993, studied biotechnology at the University of Natural Resources and Applied Life Sciences (BOKU) in Vienna, graduating with an engineering diploma degree. While studying, she was employed for two years as a research assistant at the Department of Biotechnology (DBT) ... more

    Prof. Dr. Peter Ertl

    Peter Ertl, born in 1970, studied food and biotechnology at the University of Natural Resources and Applied Life Sciences, Vienna. He obtained a PhD in chemistry from the University of Waterloo, Canada, and subsequently spent several years as a postdoc at the University of California at Ber ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: