q&more
My watch list
my.chemie.de  
Login  

News

New preparation processes for super-plastics

Water replaces toxins: Green production of plastics using hydrothermal synthesis

© Miriam Unterlass / TU Wien

1L steel reactor in the laboratory of Miriam Unterlass

22-Apr-2020: Although organic plastics are not harmful to the environment themselves, toxic substances are often used during their synthesis. TU Wien shows - there is another way.

Many materials that we use every day are not sustainable. Some are harmful to plants or animals, others contain rare elements that will not always be as readily available as they are today. A great hope for the future is to achieve different material properties by using novel organic molecules. Organic high-performance materials containing only common elements such as carbon, hydrogen or oxygen could solve our resource problem - but their preparation is usually anything but environmentally friendly. Often very toxic substances are used during the synthesis of such materials, even if the end product itself is non-toxic.

At TU Wien a different approach is taken: In the research group for organic high-performance materials, led by Prof. Miriam Unterlass at the Faculty of Technical Chemistry at TU Wien, a completely different synthetic method is employed. Instead of toxic additives, only hot water is used. A decisive breakthrough has now been achieved: two important classes of polymers could be generated using the new process - an important step towards industrial application of the new method.

High pressure and high temperature

"We are investigating so-called hydrothermal synthetic processes," says Miriam Unterlass. "We are working at high pressure and high temperature in the order of 17 bar and 200 °C. As it turns out, under such extreme conditions it is possible to avoid using toxic solvents that would otherwise be necessary for producing these polymers. The term "green chemistry" refers to those methods that allow to render not only the end products but also the synthetic processes in the chemical industry more environmentally friendly.

Already several years ago, Miriam Unterlass achieved first positive results with this technology. "We succeeded, for example, in producing organic dyes, or polyimides - plastics that are indispensable in the aviation and electronics industries. This also generated a great deal of interest from the industry," says Unterlass. "But now we have taken an important step forward: We were able to synthesize different polymer examples from two highly interesting classes of plastics - polybenzimidazoles and pyrron polymers."

New preparation processes for super-plastics

Polybenzimidazoles are, for example, nowadays used as membranes in fuel cells since they are acid-resistant even at high temperatures and can also conduct protons. Polybenzimidazole fibers are also found in fireproof clothing such as the protective suits of firefighters. " That already shows that they are real super-plastics," says Unterlass.

Pyrron polymers, on the other hand, have particularly interesting electronic properties in addition to their excellent stability. Therefore, they are suitable for applications such as field-effect transistors or as powerful and highly resistant electrode material in batteries.

"The fact that these polymers can be prepared using our hydrothermal process is remarkable since under usual conditions the chemical reactions for generating these plastics are sensitive to water", says Miriam Unterlass. "This shows how promising our method is for a wide range of applications."

The new fabrication method for the two new material classes has already been patented, with the assistance of the research and transfer support of the TU Wien. The electrochemical analysis of the products was carried out in cooperation with Imperial College London.

Original publication:
M. J. Taublaender, S. Mezzavilla, S. Thiele, F. Glöcklhofer and M. M. Unterlass; "Hydrothermal Generation of Conjugated Polymers on the Example of Pyrrone Polymers and Polybenzimidazoles"; Angew. Chem. Int. Ed.; 2020, accepted.

Facts, background information, dossiers

More about TU Wien

  • News

    Single atoms as a catalyst: Surprising effects ensue

    Metals such as gold or platinum are often used as catalysts. In the catalytic converters of vehicles, for example, platinum nanoparticles convert poisonous carbon monoxide into non-toxic CO2. Because platinum and other catalytically active metals are expensive and rare, the nanoparticles in ... more

    Why do metal oxide surfaces behave differently?

    Metal surfaces play a role as catalysts for many important applications - from fuel cells to the purification of car exhaust gases. However, their behaviour is decisively affected by oxygen atoms incorporated into the surface. This phenomenon has been known for a long time, but until now it ... more

    Stable Catalysts for New Energy

    On the way to a CO2-neutral economy, we need to perfect a whole range of technologies - including the electrochemical extraction of hydrogen from water, fuel cells, or carbon capture. All these technologies have one thing in common: they only work if suitable catalysts are used. For many ye ... more

  • Authors

    Dr. Kurt Brunner

    Kurt Brunner, born in 1973 graduated in Technical Chemistry from TU Vienna before obtaining his doctorate from the University’s Institute of Chemical Engineering in 2003. While preparing his thesis, he worked on the molecular biology of fungi. Following research work conducted at the Univer ... more

    Prof. Dr. Marko D. Mihovilovic

    Marko D. Mihovilovic graduated in technical chemistry at the Vienna University of Technology in 1993, also receiving his doctorate from the same university in 1996, in the field of organic synthetic chemistry. Post-doc placements as an Erwin Schrödinger scholarship holder then followed at t ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE