q&more
My watch list
my.chemie.de  
Login  

News

Interorganellar signals regulate longevity

Lysosome to mitochondria communication

© Raymond Laboy

Microscopy image of a C. elegans worm, where red marks the nucleus, where NFYB-1 is present, and green marks lysosomes.

20-May-2020: As people get older, they often feel less energetic, mobile or active. This may be due in part to a decline in mitochondria, the tiny powerhouses inside of our cells, which provide energy and regulate metabolism. In fact, mitochondria decline with age not only in humans, but in many species. Why they do so is not well understood. Scientists at the Max Planck Institute for Biology of Ageing in Cologne set out to understand how mitochondrial function is diminished with age and to find factors that prevent this process. They found that communication between mitochondria and other parts of the cell plays a key role.

For their studies, the scientists used the simple roundworm, Caenorhabditis elegans, an important model system for ageing research. Over half the genes of this animal are similar to those found in humans, and their mitochondria also decline with age. From their research, the scientists found a nuclear protein called NFYB-1 that switches on and off genes affecting mitochondrial activity, and which itself goes down during ageing. In mutant worms lacking this protein, mitochondria don’t work as well and worms don’t live as long.

Unexpectedly, the scientists discovered that NFYB-1 steers the activity of mitochondria through another part of the cell called the lysosome, a place where basic molecules are broken down and recycled as nutrients. “We think the lysosome talks with the mitochondria through special fats called cardiolipins and ceramides, which are essential to mitochondrial activity,” says Max Planck Director, Adam Antebi, whose laboratory spearheaded the study. Remarkably, simply feeding the NFYB-1 mutant worms cardiolipin restored mitochondrial function and worm health in these strains. Because cardiolipins and ceramides are also essential for human mitochondria, this may mean human health and ageing can be improved by understanding on how such molecules facilitate communication between different parts of the cell.

Original publication:
Rebecca George Tharyan, Andrea Annibal, Isabelle Schiffer, Raymond Laboy, Ilian Atanassov, Anna Luise Weber, Birgit Gerisch and Adam Antebi; "NFYB-1 regulates mitochondrial function and longevity via lysosomal prosaposin"; Nature Metabolism; May 18 2020

Facts, background information, dossiers

  • mitochondria
  • Caenorhabditis elegans
  • lysosomes
  • longevity

More about MPI für Biologie des Alterns

  • News

    Road map to a longer life

    In old age a variety of cellular processes decline and the risk to develop age-related diseases such as Alzheimer’s, Parkinson’s or Diabetes increases dramatically. But does ageing affect all organs and tissues in the body in the same way? And should drugs that are developed to improve heal ... more

    Gut bacteria affect ageing

    It loses its pigments, its motor skills and mental faculties decline, it gets cancer – the turquoise killifish (Nothobranchius furzeri) struggles with the same signs of old age that affect many other living creatures. Researchers at the Max Planck Institute for Biology of Ageing in Cologne ... more

More about Max-Planck-Gesellschaft

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE