q&more
My watch list
my.chemie.de  
Login  

News

Put into the right light - Reproducible and sustainable coupling reactions

Improved methods for coupling reactions with light by targeted control of the catalyst activity

Bartholomäus Pieber

Photochemical carbon-nitrogen cross-couplings can be dramatically improved by the choice of the light source.

09-Jul-2020: A team of researchers reports in the journal Nature Catalysis that sustainable carbon-nitrogen cross-couplings can be performed using simple nickel salts, carbon nitrides and light. The chemists study the use of cost-effective and reproducible semiconductors as photocatalysts in coupling reactions.

Carbon-nitrogen cross-couplings are among the most important chemical reactions for the production of active pharmaceutical ingredients, crop protection agents and organic materials. In these reactions, two molecular building blocks are selectively linked together with the aid of a catalyst. Palladium compounds, which are considered excellent catalysts, are normally used for this purpose. However, due to the low abundance of this precious metal, these are expensive and not sustainable. Nickel is intensively studied as an alternative. However, this usually requires complex nickel complexes, strong bases or high temperatures.

Activation of simple nickel compounds by light and photocatalysts

These disadvantages can be avoided by activating simple nickel compounds with light and a photocatalyst. Suitable photocatalysts usually consist of rare and expensive precious metals such as iridium and ruthenium. In addition, the range of applications of these methods is limited and incomplete reactions as well as irreproducible results are observed.

Precious metal-free methods for reproducible carbon-nitrogen cross-coupling

In the course of their efforts to replace iridium and ruthenium photocatalysts with carbon nitrides, the chemists led by Bartholomäus Pieber discovered that the limitations and poor reproducibility are due to the destruction of the nickel catalyst, which can also lead to the deactivation of the photocatalyst. A careful analysis of these reactions enabled the scientists to prevent the destruction of the catalysts by selecting suitable light sources, changing the concentration or adding stabilizing additives. This has considerably expanded the range of applications for this reaction. 

Bartholomäus Pieber, leading scientist of the research group "Catalysis", emphasizes: "The developed, precious metal-free coupling protocols open the way to cost-effective, sustainable and above all reproducible carbon-nitrogen cross-couplings, which can also be carried out with sunlight as an energy source. We will next test our methodology for the production of active pharmaceutical ingredients".

Original publication:
Gisbertz, S., Reischauer, S. & Pieber, B.: Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation. Nat Catal (2020).

Facts, background information, dossiers

More about MPI für Kolloid- und Grenzflächenforschung

  • News

    "Make two out of one" - Division of Artificial Cells

    The success of life on earth is based on the amazing ability of living cells to divide themselves into two daughter cells. During such a division process, the outer cell membrane has to undergo a series of morphological transformations that ultimately lead to membrane fission. Scientists at ... more

    Let’s build a cell

    Cells are the basic unit of life. They provide an environment for the fundamental molecules of life to interact, for reactions to take place and sustain life. However, the biological cell is very complicated, making it difficult to understand what takes place inside it. One way to tackle th ... more

    "Form is function"

    Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam have shown that growing bone tissue behaves like a viscous liquid on long time scales, thereby accepting forms with minimal surface area. This cell behavior determines the shape of the tissue when it grows on a sc ... more

  • q&more articles

    With Light in the Fight against Malaria

    Malaria represents a global threat to health, which is difficult to keep under control. Amongst more than 200 million sufferers, over 500,000 die each year of the disease, with the risk of a fatal outcome being particularly high in children [1]. more

  • Authors

    Dr. Daniel Kopetzki

    born 1983, studied chemistry at the University of Regensburg and received his doctorate from the Max Planck Institute of Colloids and Interfaces in Potsdam, in the Department of Colloid Chemistry. Since Sept. 2011, he has been working as a post-doctoral fellow for Prof. Dr. Seeberger at the ... more

    Prof. Dr. Peter Seeberger

    born 1966, studied chemistry at the University of Erlangen-Nuremberg, and received his doctorate in biochemistry from the University of Colorado. After holding a post-doctorate position at the Sloan-Kettering Institute for Cancer Research in New York City, he was Assistant Professor and Fir ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE