q&more
My watch list
my.chemie.de  
Login  

News

Immunoprotein impairs Sars-Cov-2

An endogenous protein prevents the virus from fusing with host cells: This raises hopes for new therapeutic approaches

© RUB, Marquard

Stephanie Pfänder is looking for genes that inhibit corona viruses.

30-Jul-2020: A protein produced by the human immune system can strongly inhibit corona viruses, including Sars-Cov-2, the pathogen causing Covid-19. An international team from Germany, Switzerland and the USA successfully showed that the LY6E-Protein prevents coronaviruses from causing an infection. “This finding might lead to the development of new therapeutic approaches against coronaviruses,” says Professor Stephanie Pfänder from the Department for Molecular and Medical Virology at Ruhr-Universität Bochum (RUB), lead author of the study published by the team in the journal Nature Microbiology on 23 July 2020.

Strengthening influenza viruses, impairing corona viruses

The LY6E protein plays a role in various diseases: US researchers Professor John Schoggins and Professor Charles Rice discovered that the protein enhances the infectivity of influenza viruses. In contrast, coronaviruses are inhibited by LY6E.

Funded by a Marie Curie Individual Fellowship of the European Union, Stephanie Pfänder, who was then working at the Institute of Virology and Immunology in Switzerland, visited Charles Rice’s lab at Rockefeller University in New York in 2017, in order to identify genes that prevent coronavirus infections. “This led to the discovery that LY6E has the opposite effect on coronaviruses compared to influenza viruses,” explains the researcher. Further investigations showed that the protein exerted this inhibitory effect on all analysed coronaviruses, including the pathogens causing Sars and Mers as well as Sars-Cov-2 which causes Covid-19.

Viruses unable to fuse

Tests with different cell cultures showed that LY6E affects the ability of the virus to fuse with the host cells. “If the virus is unable to fuse with these cells, it can’t cause infection,” explains corresponding author Professor Volker Thiel from the University of Bern.

The validation in an animal model succeeded thanks to a collaboration with the laboratory of John Schoggins at the Southwestern Medical Center of the University of Texas. The experiments conducted there led to the discovery that the mouse variant of the protein called Ly6e is crucial for the protection of immune cells against infections. In the absence of Ly6e, immune cells such as dendritic cells and B-cells become more susceptible to infection and their numbers decrease dramatically. Mice lacking Ly6e in immune cells are highly susceptible to a normally non-lethal mouse coronavirus and succumb to infection.

Understanding basic concepts

The researchers point out that the mouse coronavirus used in the experiment differs significantly from the pathogen causing the current Covid-19 outbreak – for example, it causes hepatisis rather than respiratory disease. Nevertheless, it is widely accepted as a model for understanding the basic concepts of coronavirus replication and immune responses in a living animal.

“Our study provides new insights into how important these antiviral genes are for the control of viral infection and for an adequate immune response against the virus,” say the authors. “Since LY6E is a naturally occurring human protein, we hope that this knowledge will aid the development of therapies that may one day be used to treat coronavirus infections.” A therapeutic approach that mimics the mechanism of action of LY6E may provide a first line of defence against novel coronavirus infections.

Original publication:
Stephanie Pfaender et al.; "LY6E impairs coronavirus fusion and confers immune control of viral disease"; Nature Microbiology; 2020

Facts, background information, dossiers

  • coronaviruses
  • SARS-CoV-2
  • Covid-19

More about Ruhr-Universität Bochum

  • News

    New kind of interaction discovered in hydrogen-producing enzymes

    In hydrogenase enzymes, the transports of protons and electrons have been considered to be separate events until now. However, coupling is the key to success here. Hydrogenases can convert hydrogen just as efficiently as expensive platinum catalysts. In order to make them usable for biotech ... more

    Programmable synthetic materials

    In DNA, information is stored in the sequence of chemical building blocks; in computers, information consists of sequences of zeros and ones. Researchers want to transfer this concept to artificial molecules. Artificial molecules could one day form the information unit of a new type of comp ... more

    Insights into the structure of an enigmatic catalyst

    In the past, the catalyst for the production of methanol had eluded all attempts to clarify its surface structure. Now researchers have learned more about its active site. Methanol is one of the most important basic chemicals used, for example, to produce plastics or building materials. To ... more

  • q&more articles

    Light plus current: The formula for researching what happens to individual nanoparticles

    A combination of dark-field microscopy and electrochemistry can make individual nanoparticles in a liquid medium visible. The technique is suited to determine the activity of catalysts during their use. more

    Vibrational spectroscopy - Label-free imaging

    Spectroscopic methods are now granting us deep insights into biological systems at previously unattainable spatial and temporal resolutions. Complementing the already well-established fluorescence spectroscopy, the major potential of label-free vibrational spectroscopy has become clear in r ... more

  • Authors

    Kevin Wonner

    Kevin Wonner, born in 1995, studied chemistry with the focus on electrochemical nanoparticle characterization at the Ruhr University Bochum. He started his PhD in 2018 at the chair of Analytical Chemistry II of Professor Dr. Kristina Tschulik and is supported by the graduate school 2376. Hi ... more

    Mathies V. Evers

    Mathies Evers, born in 1989, studied chemistry at the Ruhr University Bochum, where he researched the synthesis of atom-precise molecular clusters. After his master's degree he started his doctoral thesis at the Chair of Analytical Chemistry II of Professor Dr. Kristina Tschulik and is supp ... more

    Prof. Dr. Kristina Tschulik

    Kristina Tschulik received her doctorate from TU Dresden in 2012 and worked as a postdoctoral fellow at the Leibniz Institute for Solid State and Materials Research Dresden and at the University of Oxford. Afterwards she established the working group for “Electrochemistry and Nanoscale Mate ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE