18-Aug-2020 - Ruhr-Universität Bochum

New kind of interaction discovered in hydrogen-producing enzymes

The findings should help to develop more efficient miniaturised hydrogenase catalysts in the future

In hydrogenase enzymes, the transports of protons and electrons have been considered to be separate events until now. However, coupling is the key to success here.

Hydrogenases can convert hydrogen just as efficiently as expensive platinum catalysts. In order to make them usable for biotechnological applications, researchers are deciphering how they work in detail. A team from Ruhr-Universität Bochum and the University of Oxford now reports in the journal “Proceedings of the National Academy of Sciences” (PNAS) that the transfer of protons and electrons by the enzyme takes place spatially separated, but is nevertheless coupled and thus, a decisive factor for efficiency.

Most efficient hydrogen producers

The so called class of [FeFe]-hydrogenases, which are for example found in green algae,  are nature’s most efficient hydrogen producers. They can both produce and split hydrogen. The actual chemical reaction takes place at the active site buried deep inside the enzyme. “The electrons and protons required for the reaction must therefore find an efficient way to get there,” explains Dr. Oliver Lampret from the Photobiotechnology Research Group in Bochum, one of the authors of the paper. Electron transport takes place via an electric wire, so to speak, consisting of several iron-sulphur clusters. The protons are transported to the active centre via a proton transfer pathway consisting of five amino acids and one water molecule.

“Although it was known that there was a proton-coupled electron transfer mechanism, researchers had so far assumed that the coupling only takes place at the active centre itself,” says Professor Thomas Happe, Head of the Photobiotechnology Research Group.

Protein engineering makes coupling visible

The team manipulated the hydrogenases in such a way that the proton transfer was significantly slower, but hydrogen could still be converted. Using dynamic electrochemistry, they showed that hydrogen conversion decreased significantly and more importantly, significant overpotentials were needed to catalyse the production or splitting of hydrogen. By manipulating the proton transfer pathway, the researchers had indirectly reduced the rate of electron transfer.

“As the two transfer routes are spatially separated, we assume that a cooperative long-range coupling of both processes is necessary for efficient catalysis,” concludes Oliver Lampret. The findings should help to develop more efficient miniaturised hydrogenase catalysts in the future.

Facts, background information, dossiers

  • hydrogenases
  • enzymes
  • protons

More about University of Oxford

  • News

    How do killer T cells know where danger is coming from?

    How do killer T cells recognise cells in the body that have been infected by viruses? Matter foreign to the body is presented on the surface of these cells as antigens that act as a kind of road sign. A network of accessory proteins – the chaperones – ensure that this sign retains its stabi ... more

    OSCAR detects cells in standby mode

    Dormancy is a sleep-like state of cells that protects them from genetic damage and thus prolongs their survival. This state is reversible and characterized by low metabolic activity and division rate. Researchers from the Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) and the Un ... more

    Shaping the social networks of neurons

    The three proteins Teneurin, Latrophilin and FLRT hold together and bring neighboring neurons into close contact, enabling the formation of synapses and the exchange of information between the cells. In the early phase of brain development, however, the interaction of the same proteins lead ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: