01-Sep-2020 - Universität Basel

How bacteria adhere to fiber in the gut

Two binding modes allow bacteria to stick to surfaces under flow

Researchers have revealed a new molecular mechanism by which bacteria adhere to cellulose fibers in the human gut. Thanks to two different binding modes, they can withstand the shear forces in the body. Scientists of the University of Basel and ETH Zurich published their results in the journal “Nature Communications”.

Cellulose is a major building block of plant cell walls, consisting of molecules linked together into solid fibers. For humans, cellulose is indigestible, and the majority of gut bacteria lack the enzymes required to break down cellulose.

However, recently genetic material from the cellulose-degrading bacterium R. champanellensis was detected in human gut samples. Bacterial colonization of the intestine is essential for human physiology, and understanding how gut bacteria adhere to cellulose broadens our knowledge of the microbiome and its relationship to human health.

The bacterium under investigation uses an intricate network of scaffold proteins and enzymes on the outer cell wall, referred to as a cellulosome network, to attach to and degrade cellulose fibers. These cellulosome networks are held together by families of interacting proteins.

Of particular interest is the cohesin-dockerin interaction responsible for anchoring the cellulosome network to the cell wall. This interaction needs to withstand shear forces in the body to adhere to fiber. This vital feature motivated the researchers to investigate in more detail how the anchoring complex responds to mechanical forces.

By using a combination of single-molecule atomic force microscopy, single-molecule fluorescence and molecular dynamics simulations, Professor Michael Nash from the University of Basel and ETH Zurich along with collaborators from LMU Munich and Auburn University studied how the complex resists external force.

Two binding modes allow bacteria to stick to surfaces under flow

They were able to show that the complex exhibits a rare behavior called dual binding mode, where the proteins form a complex in two distinct ways. The researchers found that the two binding modes have very different mechanical properties, with one breaking at low forces of around 200 piconewtons and the other exhibiting a much higher stability breaking only at 600 piconewtons of force.

Further analysis showed that the protein complex displays a behavior called a “catch bond,” meaning that the protein interaction becomes stronger as force is ramped up. The dynamics of this interaction are believed to allow the bacteria to adhere to cellulose under shear stress and release the complex in response to new substrates or to explore new environments.

“We clearly observe the dual binding modes, but can only speculate on their biological significance. We think the bacteria might control the binding mode preference by modifying the proteins. This would allow switching from a low to high adhesion state depending on the environment,” Professor Nash explains.

By shedding light on this natural adhesion mechanism, these findings set the stage for the development of artificial molecular mechanisms that exhibit similar behavior but bind to disease targets. Such materials could have applications in bio-based medical superglues or shear-enhanced binding of therapeutic nanoparticles inside the body. “For now, we are excited to return to the laboratory and see what sticks,” says Nash.

Facts, background information, dossiers

  • gut bacteria
  • cellulose
  • single molecule microscopy
  • protein complexes

More about Universität Basel

  • News

    Stretching changes the electronic properties of graphene

    Graphene consists of a single layer of carbon atoms arranged in a hexagonal lattice. The material is very flexible and has excellent electronic properties, making it attractive for numerous applications – electronic components in particular. Researchers led by Professor Christian Schönenber ... more

    New class of substances for redox reactions

    An interdisciplinary, multinational research team presents a new class of chemical compounds that can be reversibly oxidized and reduced. The compounds known as 'pyrazinacenes' are simple, stable compounds that consist of a series of connected nitrogen-containing carbon rings. They are suit ... more

    An artificial cell on a chip

    Researchers at the University of Basel have developed a precisely controllable system for mimicking biochemical reaction cascades in cells. Using microfluidic technology, they produce miniature polymeric reaction containers equipped with the desired properties. This “cell on a chip” is usef ... more

More about ETH Zürich

  • News

    High-precision frequency measurement

    Many scientific experiments require highly precise time measurements with the help of a clearly defined frequency. Now, a new approach allows the direct comparison of frequency measurements in the lab with the atomic clock in Bern, Switzerland. For many scientific experiments, today’s resea ... more

    Harnessing AI to discover new drugs inspired by nature

    Artificial intelligence (AI) is able to recognise the biological activity of natural products in a targeted manner, as researchers at ETH Zurich have demonstrated. Moreover, AI helps to find molecules that have the same effect as a natural substance but are easier to manufacture. This opens ... more

    The Achilles heel of the Coronavirus

    SARS-​CoV-2 is critically dependent on a special mechanism for the production of its proteins. A collaborative team led by a research group at ETH Zurich obtained molecular insights into this process and demonstrated that it can be inhibited by chemical compounds, thereby significantly redu ... more

  • q&more articles

    Analysis in picoliter volumes

    Reducing time, costs and human resources: many basic as well as applied analytical and diagnostic challenges can be performed on lab-on-a-chip systems. They enable sample quantities to be reduced, work steps to be automated and completed in parallel, and are ideal for combination with highl ... more

    Investment for the Future

    This is a very particular concern and at the same time the demand placed annually on Dr. Irmgard Werner, who, as a lecturer at the ETH Zurich, supports around 65 pharmacy students in the 5th semester practical training in “pharmaceutical analysis”. With joy and enthusiasm for her subject sh ... more

  • Authors

    Prof. Dr. Petra S. Dittrich

    Petra Dittrich is an Associate Professor in the Department of Biosystems Science and Engineering at ETH Zurich (Switzerland). She studied chemistry at Bielefeld University and the University of Salamanca (Spain). After completing her doctoral studies at the Max Planck Institute for Biophysi ... more

    Dr. Felix Kurth

    Felix Kurth studied bioengineering at the Technical University Dortmund (Germany) and at the Royal Institute of Technology in Stockholm (Sweden). During his PhD studies at ETH Zurich (Switzerland), which he completed in 2015, he developed lab-on-a-chip systems and methods for quantifying me ... more

    Lucas Armbrecht

    Lucas Armbrecht studied microsystems technology at the University of Freiburg (Breisgau, Germany). During his master’s, he focused on sensors & actuators and lab-on-a-chip systems. Since June 2015, he is PhD student in the Bioanalytics Group at ETH Zurich (Switzerland). In his doctoral stud ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: