04-Sep-2020 - Ruhr-Universität Bochum (RUB)

Attacking tumours directly on identification

Therapy and diagnostics of tumours in only one step is possible with the aid of so-called theranostic agents

The combination of a biomolecule and a metal complex can target, bind, mark and damage cancer cells. A German-Spanish team has manufactured such a theranostic agent that visualises tumour cells by irradiation with visible light, and proved its effectiveness against lung cancer cells. Andres Luengo from the research group led by Professor M. Concepción Gimeno based at the University of Zaragoza (Spain) carried out part of the work during a research stay in the group headed by Professor Nils Metzler-Nolte at Ruhr-Universität Bochum (RUB).

Visualisation and treatment in one step

Theranostics, the combination of “therapy” and “diagnostics”, refers to drugs that are used not only to treat tumours but also to render them visible. The principle is as simple as it is ingenious: for example, in prostate cancer treatment, a prostate-specific antibody is radioactively labelled. Once the antibody has bound the prostate cancer cells, the radioactivity emitted by the theranostic agent is used to visualise the tumour and possible metastases, and at the same time it also has a damaging effect on the cancer cells at the target site.

During his research stay at RUB, Andres Luengo took advantage of the experience of the Bioinorganic Chemistry group regarding the production of small biomolecules and metal building blocks that have a toxic effect on cancer cells. He combined a small biomolecule called enkephalin, which can dock to opioid receptors that are abundant in some cancers, with a luminescent and a toxic metal building block. He thus succeeded in producing a molecule that has the same properties as other advanced theranostic agents, but which can be detected by irradiation with visible light rather than radioactivity.

Promising new system

Gimeno’s research team used the molecule’s luminescent properties to detect it within cells and demonstrated its toxic effect at the same time, thus paving the way for further research into this promising and innovative theranostic system. 

Following the analysis of the new compound, the researchers found that only one of three slightly different compounds had an active effect against cancer cells. In addition, it turned out that the compound moved to an unexpected location in the cancer cells where the team had not expected to find it. The damaging effect on tumour cells depended on the stability of the bond between the biomolecule, a peptide, and the cell-damaging metal complex: the cell-damaging complex can reach its cellular target structure and attack the cells only if that bond is less stable and can therefore break up.

Facts, background information, dossiers

  • theranostics
  • cancer
  • lung cancer
  • cancer diagnostics
  • cancer therapy

More about Ruhr-Universität Bochum

  • News

    What happens in brain cells affected by Alzheimer’s disease?

    In addition to plaques that accumulate outside of nerve cells in the brain, Alzheimer’s disease is also characterised by changes inside these cells. Researchers from the Cell Signalling research group at the Chair of Molecular Biochemistry at RUB, headed by Dr. Thorsten Müller, have been st ... more

    The role of hydrophobic molecules in catalytic reactions

    Electrochemical processes could be used to convert CO2 into useful starting materials for industry. To optimise the processes, chemists are attempting to calculate in detail the energy costs caused by the various reaction partners and steps. Researchers from Ruhr-Universität Bochum (RUB) an ... more

    A stable copper catalyst for CO2 conversion

    A new catalyst for the conversion of carbon dioxide (CO2) into chemicals or fuels has been developed by researchers at Ruhr-Universität Bochum and the University of Duisburg-Essen. They optimized already available copper catalysts to improve their selectivity and long-term stability. The re ... more

  • q&more articles

    Customized ligands pave the way for new reaction pathways

    For the first time, an efficient catalyst for palladium-catalyzed C–C bonding between aryl chlorides and alkyl lithium compounds has been found. This reaction enables simpler synthesis routes for important products, such as pharmaceuticals, while avoiding much salt waste. more

    Light plus current: The formula for researching what happens to individual nanoparticles

    A combination of dark-field microscopy and electrochemistry can make individual nanoparticles in a liquid medium visible. The technique is suited to determine the activity of catalysts during their use. more

    Vibrational spectroscopy - Label-free imaging

    Spectroscopic methods are now granting us deep insights into biological systems at previously unattainable spatial and temporal resolutions. Complementing the already well-established fluorescence spectroscopy, the major potential of label-free vibrational spectroscopy has become clear in r ... more

  • Authors

    Henning Steinert

    Henning Steinert, born in 1993, studied chemistry at Carl-von-Ossietzky University in Oldenburg, where he researched, among other things, the activation of Si–H bonds on titanium complexes. He is currently working on his doctorate at the Ruhr-Universität Bochum, Chair of Inorganic Chemistry ... more

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, born in 1982, studied chemistry at Marburg and Würzburg universities and received her doctorate from the Technical University Dortmund in 2009. After a postdoctoral stay at the University of California in Berkeley, she headed an Emmy Noether junior research group ... more

    Kevin Wonner

    Kevin Wonner, born in 1995, studied chemistry with the focus on electrochemical nanoparticle characterization at the Ruhr University Bochum. He started his PhD in 2018 at the chair of Analytical Chemistry II of Professor Dr. Kristina Tschulik and is supported by the graduate school 2376. Hi ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: