10-Sep-2020 - Institut Català d'Investigació Química (ICIQ)

Cascades with carbon dioxide

Novel catalytic process for converting CO2 into valuable chemical intermediates in the form of cyclic carbonates

Carbon dioxide (CO2) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably. In the journal Angewandte Chemie, Spanish researchers have now introduced a novel catalytic process for converting CO2 into valuable chemical intermediates in the form of cyclic carbonates.

Getting CO2 to react is unfortunately not easy. Currently, most research is focused on the conversion of CO2) into methanol, which can be used as an alternative fuel as well as a feedstock for the chemical industry. Innovative catalytic processes could allow CO2 to be converted into valuable chemical compounds without taking a detour through methanol, perhaps for the production of biodegradable plastics or pharmaceutical intermediates.

One highly promising approach is the conversion of CO2 into organic carbonates, which are compounds that contain a building block derived from carbonic acid, comprising carbon atom attached to three oxygen atoms. Researchers working with Arjan W. Kleij at the Barcelona Institute of Science and Technology (Barcelona), the Institute of Chemical Research of Catalonia (Tarragona), and the Catalan Institute of Research and Advanced Studies (Barcelona), have developed a conceptually new process to produce carbonates in the form of six-membered rings, starting from CO2 and basic, easily accessible building blocks. These cyclic carbonates have great potential for the creation of new CO2-based polycarbonates.

The starting materials are compounds with a carbon-carbon double bond and an alcohol group (-OH) on a neighboring carbon atom (homoallylic alcohols). In the first step of the reaction, the double bond is converted into an epoxide, a three-membered ring with one oxygen and two carbon atoms. The epoxide is able to react with CO2 in the presence of a specific catalyst. The product is a cyclic carbonate in the form of a five-membered ring with three carbon and two oxygen atoms. The carbon atom at the "tip" of the five-membered ring is attached to an additional oxygen atom. In the next step, an organic catalyst (N-heterocyclic base) activates the OH group and causes the five-membered ring to rearrange into a six-membered ring. The oxygen atom from the OH group is integrated into the new ring, while one of the oxygen atoms from the original five-membered ring forms a new OH group. However, the reverse reaction also takes place because the original five-membered ring is significantly more energetically favorable, and only a vanishingly small amount of the six-membered ring is present at equilibrium. The trick is to trap the six-membered ring. The new OH group binds to a reagent (acylation) because its different position makes it considerably more reactive than the original OH group.

This newly developed process gives access to a broad palette of novel, six-membered carbonate rings in excellent yields, with high selectivity and under mild reaction conditions. This widens the repertoire of CO2-based heterocycles and polymers, which are difficult to produce by conventional methods.

Facts, background information, dossiers

More about Angewandte Chemie

  • News

    The Fastest One Wins

    Indole, and structures derived from it, are a component of many natural substances, such as the amino acid tryptophan. A new catalytic reaction produces cyclopenta[b]indoles—frameworks made of three rings that are joined at the edges—very selectively and with the desired spatial structure. ... more

    Radical Attack on Live Cells

    Is there a way to chemically manipulate small, confined areas on cellular surfaces? Scientists have developed a microfluidic probe to send a flow of free radicals on live cells and track the outcome using fluorescence imaging. As outlined in the journal Angewandte Chemie, this approach make ... more

    Degradable sugar-based polymers may store and release useful molecular freight

    Degradable, bio-based polymers offer options for chemical recycling, and they can be a tool to store and release useful molecules. Scientists have developed a class of sugar-based polymers that are degradable through acid hydrolysis. The researchers also integrated “cargo” molecules in the ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: