q&more
My watch list
my.chemie.de  
Login  

News

Allergic immune responses help fight bacterial infections

Exciting discovery could also explain why the body has maintained the “allergy module” throughout evolution

Bobby R. Malhotra CeMM

Artistic 3D of a mast cell with IgE antibodies, which bound to the receptor FceRI on the cell surface and Staphylococcus aureus bacteria

11-Sep-2020: Researchers from CeMM Research Center of Molecular Medicine of the Austrian Academy of Sciences, the Medical University of Vienna and Stanford University School of Medicine, have found that a module of the immune system, which is best known for causing allergic reactions, plays a key role in acquiring host defense against infections triggered by the bacterium Staphylococcus aureus. This “allergy module”, constituted by mast cells and Immunoglobulin E, can grant protection and increased resistance against secondary bacterial infections in the body. These findings indicate a beneficial function for allergic immune responses and are now published in the journal Immunity.

Allergy is one of the most common diseases in Europe, it is estimated that more than 150 million Europeans suffer from recurring allergies and by 2025 this could have increased to half of the entire European population.1 Allergic patients initially undergo a process of “sensitization”, meaning that their immune system develops a specific class of antibodies, so called Immunoglobulin E antibodies (IgE), which can recognize external proteins, referred to as allergens. IgEs bind and interact with cells that express a specific receptor called FcεR1. There are only a few cell types in the body that express the FcεR1 receptor and probably the most important ones are mast cells, a type of immune cell found in most tissues throughout the body.

When re-exposed to the allergen, mast cells (with IgE bound to their FcεR1 receptors) immediately react by rapidly releasing different mediators (e.g. histamine, proteases or cytokines) that cause the classic allergic symptoms. These symptoms depend on the tissue where the contact with the allergen happens and can range from sneezing/wheezing (respiratory tract) to diarrhea and abdominal pain (gastrointestinal tract) or itching (skin). Systemic exposure to allergens can activate a large number of mast cells from different organs at the same time, causing anaphylaxis, a serious and life-threatening allergic reaction.

Despite decades of research and detailed knowledge of the critical role of IgEs and mast cells in allergies, the physiological, beneficial function of this “allergy module” is still not completely understood. In 2006, Stephen J. Galli, senior co-author of this study, and his laboratory at Stanford University revealed the importance of mast cells for innate resistance against venoms of certain snakes and the honeybee. Subsequent work from the Galli laboratory showed the critical role of the “allergy module” in acquired host defense against high doses of venom: this finding (to which Philipp Starkl, first author of the current study, contributed importantly) represented the first clear experimental evidence supporting the “Toxin Hypothesis” postulated by Margie Profet in 1991. This hypothesis proposed a beneficial function for allergic reactions against noxious substances.

Following up on this discovery, Philipp Starkl, Senior Postdoctoral fellow at the Medical University of Vienna and CeMM, together with Sylvia Knapp, Professor at the Medical University of Vienna and CeMM PI, and Stephen J. Galli, Professor at Stanford University School of Medicine, and colleagues, set out to investigate whether this phenomenon could be relevant in defense against other toxin-producing organisms, in particular, pathogenic bacteria. The authors selected the bacterium Staphylococcus aureus as pathogen model due to its enormous clinical relevance and broad repertoire of toxins. This bacterium is a prototypic antibiotics-resistant pathogen and is also associated with the development of allergic immune responses in diseases such as asthma and atopic dermatitis. For their research, they used different experimental S. aureus infection models in combination with genetic approaches and in vitro mast cell models to reveal the functions of selected components of IgE effector mechanisms.

The scientists found that mice with a mild S. aureus skin infection develop an adaptive immune response and specific IgEs antibodies against bacterial components. This immune response grants these mice an increased resistance when they are confronted with a severe secondary lung or skin and soft tissue infection. However, mice that are lacking functional IgE effector mechanisms or mast cells are unable to build such protection. These findings indicate that the “allergic” immune response against bacteria is not pathological, but instead protective. Hence, defense against toxin-producing pathogenic bacteria might be an important biological function of the “allergy module”.

This study is an important collaboration initiated by Philipp Starkl at the laboratory of Stephen J. Galli at Stanford University together with other colleagues and then continued at the laboratory of Sylvia Knapp at CeMM and the Medical University of Vienna. This exciting discovery not only advances the general understanding of the immune system and most notably allergic immune responses, but it could also explain why the body has maintained the “allergy module” throughout evolution. Despite their dangerous contributions to allergic diseases, IgEs and mast cells can exert beneficial functions that the immune system can capitalize on to protect the body against venoms and infections with toxin-producing bacteria, such as S. aureus.

Original publication:
"IgE Effector Mechanisms, in Concert with Mast Cells, Contribute to Acquired Host Defense against Staphylococcus aureus"; Immunity; 2020

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences

Recommend news PDF version / Print Add news to watchlist

Share on

Facts, background information, dossiers

  • immune system
  • allergies
  • mast cells
  • bacteria
  • Staphylococcus aureus

More about CeMM

  • News

    Single-cell RNA seq method developed to accurately quantify cell-specific drug effects in pancreatic islets

    Researchers from Stefan Kubicek’s and Christoph Bock’s groups, at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences in Vienna, have developed a method to accurately assess the effect of specific drugs in isolated pancreatic tissue by using a refined single- ... more

    How a virus becomes chronic

    Chronic viral infections like HIV or hepatitis are among the biggest threads to human health worldwide. While an acute viral infection usually results in a full recovery and effective immune memory, chronic viruses evade the immune system and remain permanently in their host´s body. Treatin ... more

    Pharmacoscopy: Next-Generation Microscopy

    A novel microscopy method allows unprecedented insights into the spatial organization and direct interactions of immune cells within blood and other liquid multi-lineage tissues. The assay, called “Pharmacoscopy”, developed and patented by scientists from CeMM Research Center for Molecular ... more

More about Medizinische Uni Wien

More about Stanford University

  • News

    Pathogens find safe harbor deep in the gastric glands

    Scientists have long tried to understand how pathogenic bacteria like Helicobacter pylori, a risk factor for stomach ulcers and cancer, survive in the harsh environment of the stomach. In a new study in the open-access journal PLOS Biology, researchers led by Connie Fung and Manuel Amieva a ... more

    Protein complex prevents toxic aggregation of proteins

    A protein complex within the cell has been found to play a key role in preventing the toxicity of proteins which build up amyloid plaques and can lead to neurodegenerative disorders such as Alzheimer’s and Huntington’s disease. Researchers from the Universities of Konstanz (Germany), Leeds ... more

    Efficient electrochemical cells for CO2 conversion

    Scientists at Stanford University have developed electrochemical cells that convert carbon monoxide (CO) derived from CO2 into commercially viable compounds more effectively and efficiently than existing technologies. Their research provides a new strategy for capturing CO2 and converting i ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE