My watch list


Green Chemistry: Sustainable p-xylene production

Green, sustainable and biodegradable polymers

Green Chem., 2020, DOI: 10.1039/D0GC01517B Published by The Royal Society of Chemistry

Synthesis of p-xylene from waste biomass and its further conversion into biopolymers.

Green Chem., 2020, DOI: 10.1039/D0GC01517B Published by The Royal Society of Chemistry

Representation of “Three-in-one” reaction in continuous flow for the synthesis of pXL from waste biomass derivable DMF and AA. J. A. M. Mesa, F. Brandi, I. Shekova, M. Antonietti and M. Al-Naji, “p-Xylene from 2,5-dimethylfuran and acrylic acid using zeolite in continuous flow system”

18-Sep-2020: Lemonade, juice and mineral water often come in PET bottles. While these are practical and functional, their production is complex and not necessarily sustainable. The starting material for terephthalic acid, which is used to produce saturated polyesters such as PET (Polyethylene terephthalate), is p-xylene pXL. To this day, the production of pXL is still based on fossil raw materials. pXL is considered one of the most important building blocks in the polymer industry. In 2015, around 37 million tons of pXL were used, mainly for the production of PET and other polyester fibers. These figures show very clearly that there is a great need for the selective synthesis of pXL from renewable raw materials.

Three-in-one heterogeneously-catalyzed reaction

The "Biorefinery and Sustainable Chemistry" team at the Max Planck Institute of Colloids and Interfaces in Potsdam has now developed a green and sustainable approach to selective pXL synthesis. This approach involves a heterogeneously catalyzed three-in-one reaction: Diels-Alder cycloaddition of biologically derived 2,5-dimethylfuran (DMF) to acrylic acid (AA), dehydration to form the phenyl ring and final decarboxylation to pXL in a continuous flow system.

Green, sustainable and biodegradable polymers

The result of this process is a very valuable product mixture. This consists of 83% pXL and 17% 2,5-dimethylbenzoic acid (DMBA), which can be easily separated due to its boiling points. This new approach will enable the synthesis of green, sustainable and biodegradable polymers in the future, for example the replacement of packaging materials for plastic bottles, films and textile fibers derived from fossil raw materials.

Original publication:
Mendoza Mesa, J. A.; Brandi, F.; Shekova, I.; Antonietti, M.; Al-Naji, M.; "p-Xylene from 2,5-dimethylfuran and acrylic acid using zeolite in continuous flow system"; Green Chemistry; 2020

Facts, background information, dossiers

More about MPI für Kolloid- und Grenzflächenforschung

  • News

    Put into the right light - Reproducible and sustainable coupling reactions

    A team of researchers reports in the journal Nature Catalysis that sustainable carbon-nitrogen cross-couplings can be performed using simple nickel salts, carbon nitrides and light. The chemists study the use of cost-effective and reproducible semiconductors as photocatalysts in coupling re ... more

    "Make two out of one" - Division of Artificial Cells

    The success of life on earth is based on the amazing ability of living cells to divide themselves into two daughter cells. During such a division process, the outer cell membrane has to undergo a series of morphological transformations that ultimately lead to membrane fission. Scientists at ... more

    Let’s build a cell

    Cells are the basic unit of life. They provide an environment for the fundamental molecules of life to interact, for reactions to take place and sustain life. However, the biological cell is very complicated, making it difficult to understand what takes place inside it. One way to tackle th ... more

  • q&more articles

    With Light in the Fight against Malaria

    Malaria represents a global threat to health, which is difficult to keep under control. Amongst more than 200 million sufferers, over 500,000 die each year of the disease, with the risk of a fatal outcome being particularly high in children [1]. more

  • Authors

    Dr. Daniel Kopetzki

    born 1983, studied chemistry at the University of Regensburg and received his doctorate from the Max Planck Institute of Colloids and Interfaces in Potsdam, in the Department of Colloid Chemistry. Since Sept. 2011, he has been working as a post-doctoral fellow for Prof. Dr. Seeberger at the ... more

    Prof. Dr. Peter Seeberger

    born 1966, studied chemistry at the University of Erlangen-Nuremberg, and received his doctorate in biochemistry from the University of Colorado. After holding a post-doctorate position at the Sloan-Kettering Institute for Cancer Research in New York City, he was Assistant Professor and Fir ... more

More about Max-Planck-Gesellschaft

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:


Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE