15-Oct-2020 - Max-Planck-Institut für Polymerforschung

Combination Therapy against Cancer

Synergistic anticancer therapy with two cell killer agent systems in one nanocapsule

In their quest to destroy cancer cells, researchers are turning to combinational therapies more and more. Scientists from Germany and China have now combined a chemotherapeutic and photodynamic approach. All agents are encapsulated in nanocapsules with a protein shell to be delivered to the tumor. There, light irradiation triggers a cascade of events, which lead to the destruction of the tumor cells, the researchers write in the journal Angewandte Chemie.

Different anticancer agents use different strategies. DNA-damaging agents make the DNA dysfunctional so the tumor cannot grow. Photodynamic agents generate reactive oxygen species (ROS) when irradiated with light. These ROS then interfere with organelles in the cell and push the cells toward programmed cell death known as apoptosis.

However, some cancer types have developed resistances. Either the drug cannot enter the cell or the cells quickly repair the damaged DNA strands. To enhance effectivity, Katharina Landfester and her colleagues from the Max Planck Institute for Polymer Research, Mainz, Germany, and researchers from Dalian University of Technology, Dalian, China, combined chemotherapeutic and photodynamic agents. All agents were packed inside a nanocapsule for delivery to the tumor cells.

Photodynamic therapy can be less effective in solid tumors within which the oxygen level is too low to generate enough ROS. Therefore, the scientists used a modified system that partly recycles oxygen. In this system, a photosensitizer produces ROS after light irradiation. Enzymes of the cell convert the ROS to hydrogen peroxide. Another reagent called Fenton reagent—which is basically iron in its highest oxidation state—then back-transforms the hydrogen peroxide to ROS and oxygen.

The authors said that it was challenging to assemble all reagents in one nanocapsule. The chemotherapeutic agent, cisplatin, is poorly soluble in water, while ovalbumin, the nanocapsule protein, does not dissolve in the organic solvent. Using a miniemulsion technique, the scientists eventually combined all three reagents in a solvent mixture and wrapped them up in a shell of ovalbumin. They stabilized and emulsified these nanocapsules by adding a copolymer based on poly(ethylene glycol).

The scientists tested this system on tumor cell lines. The nanocapsules entered the cells, released their loads, and developed ROS when irradiated with red light. The agent set also killed cells that were resistant to cisplatin or had a particularly low oxygen concentration.

The combined encapsulated drugs also stopped tumor growth in live mice. The authors found that the reagents accumulated in the tumor tissue. They also made the tumors shrink over time without affecting healthy tissue or other organs.

The authors highlighted that the anticancer agents were delivered to the tumor in nanocapsules and worked synergistically. Treatments involving only one agent, or a combination of two, were much less effective. The authors proposed that similar synergistic platforms will play a major role in future therapy settings.

Facts, background information, dossiers

  • combination drug therapy
  • cancer
  • chemotherapy
  • photodynamic therapy
  • nanocapsules
  • anticancer drugs

More about MPI für Polymerforschung

  • News

    Green wave for “gene cabs”

    Viruses help researchers to introduce genes into cells so that they can produce active pharmaceutical ingredients, for example. Special peptides stimulate the process. Until now, however, the efficiency increase was poorly understood. A team of researchers from the MPI for Polymer Research, ... more

    More beer in the glass with physics

    While foam is certainly desirable in the bathtub or on beer, preventing foam - for example in industrial processes - is a much-discussed topic. Often, oils or particles are added to liquids to prevent foaming. If these are harmful to health or the environment, they must be removed again usi ... more

    Molecules in an egg carton

    The production of high-quality monolayers – i.e. only one molecule high - is highly relevant for optoelectronic components such as organic light-emitting diodes used today in modern cell phones: Both lifetime and energy efficiency can be increased. Scientists at the Max Planck Institute for ... more

More about Angewandte Chemie

  • News

    New Tools Against Hospital Infections?

    Antibiotic-resistant hospital pathogens are not to be underestimated as a health risk. A research team has now introduced a new approach for treating multiple-drug resistant Staphylococcus in the journal Angewandte Chemie. It is based on a synthetic peptide that reduces the virulence of the ... more

    Firefly Luminescence Reveals Pesticides

    A luminescence reaction modeled on fireflies can detect contamination with organophosphates with high sensitivity, ease, and low cost. At the center of this technology is a new enzymatic method for the synthesis of analogues of luciferin, the substance that makes fireflies glow. As reported ... more

    Strong and elastic, yet degradable: protein-based bioplastics

    More than eight million tons of plastic end up in the oceans every year—a serious danger for the environment and health. Biodegradable bioplastics could provide an alternative. In the journal Angewandte Chemie, a research team has now introduced a new method for the production of protein-ba ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: