13-Nov-2020 - Friedrich-Alexander-Universität Erlangen-Nürnberg

Carbyne – an unusual form of carbon

International team of researchers investigates optical band gap of carbon compound

Which photophysical properties does carbyne have? This was the subject of research carried out by scientists at FAU, the University of Alberta, Canada, and the Ecole Polytechnique Fédérale de Lausanne in Switzerland, which has led to a greater understanding of the properties of this unusual form of carbon.

‘Carbon has a very special status in the periodic table of the elements and forms the basis for all forms of life due to the extremely large number of chemical compounds it can form,’ explains Prof. Dr. Dirk M. Guldi at the Chair of Physical Chemistry I at FAU. ‘The most well-known examples are three-dimensional graphite and diamond. However, two-dimensional graphene, one-dimensional nanotubes and zero-dimensional nanodots also open up new opportunities for electronics applications in the future.’

Material with extraordinary properties

Carbyne is a modification of carbon, known as an allotrope. It is manufactured synthetically, comprises one single and very long chain of carbon atoms, and is regarded as a material with extremely interesting electronic and mechanical properties. ‘However, carbon has a high level of reactivity in this form,’ emphasises Prof. Dr. Clémence Corminboef from EPFL. ‘Such long chains are extremely unstable and thus very difficult to characterise.’

Despite this fact, the international research team successfully characterised the chains using a roundabout route. The scientists led by Prof. Dr. Dirk M. Guldi at FAU, Prof. Dr. Clémence Corminboeuf, Prof. Dr. Holger Frauenrath from EPFL and Prof. Dr. Rik R. Tykwinski from the University of Alberta questioned existing assumptions about the photophysical properties of carbyne and gained new insights.

During their research, the team mainly focused on what are known as oligoynes. ‘We can manufacture carbyne chains of specific lengths and protect them from decomposition by adding a type of bumper made of atoms to the ends of the chains. This class of compound has sufficient chemical stability and is known as an oligoyne,’ explains Prof. Dr. Holger Frauenrath from EPFL.

Using the optical band gap

The researchers specifically manufactured two series of oligoynes with varying symmetries and with up to 24 alternating triple and single bonds. Using spectroscopy, they subsequently tracked the deactivation processes of the relevant molecules from excitation with light up to complete relaxation. ‘We were thus able to determine the mechanism behind the entire deactivation process of the oligoynes from an excited state right back to their original initial state and, thanks to the data we gained, we were able to make a prediction about the properties of carbyne,’ concludes Prof. Dr. Rik R. Tykwinski from the University of Alberta.

One important finding was the fact that the so-called optical band gap is actually much smaller than previously assumed. Band gap is a term from the field of semiconductor physics and describes the electrical conductivity of crystals, metals and semiconductors. ‘This is an enormous advantage,’ says Prof. Guldi. ‘The smaller the band gap, the less energy is required to conduct electricity.’ Silicon, for example, which is used in microchips and solar cells, possesses this important property. Carbyne could be used in conjunction with silicon in the future due to its excellent photophysical properties.

Facts, background information, dossiers

More about Friedrich-Alexander-Universität Erlangen-Nürnberg

  • News

    Nano-Rust: Smart Additive for Autonomous Temperature Control

    The right temperature matters – whether in technical processes, for the quality of food and medicines, or the lifetime of electronic components and batteries. For this purpose, temperature indicators record (un)desired temperature increases that can be read out later. Researchers in the gro ... more

    More than a coffee ring

    What do coffee, red wine and ink have in common? The stubborn stains they leave behind. Anyone who has ever knocked over a cup of coffee will know that coffee dries in an unusual pattern, the stain is lighter at the center but it gets darker around the perimeter, an effect known as the coff ... more

    By capsule through the bloodstream

    Bacteria in the intestine pack a wide spectrum of their biomolecules into small capsules. These are transported via the bloodstream to various organs in the body and even absorbed and processed by nerve cells in the brain. This has now been shown for the first time by a team of researchers ... more

  • q&more articles

    Transfer of aroma compounds into breast milk

    “We are what we eat.” In a way, this quote by the German philosopher Ludwig Feuerbach (1804–1872) also applies to what we feed our offspring: the aroma profile of breast milk reflects a mother's eating habits [1, 2] and can thus influence the preferences of her children ... more

    Colorful off-odors in artists’ paints

    Acrylic-based paints are among the most frequently used by artists. Although they can be produced on a water basis and with low levels of volatile substances, they often still possess a strong inherent smell. However, no targeted studies have as yet been conducted to identify odor-active su ... more

    New Trends in Computer-Aided Drug Design

    Computer-Aided Drug design (CADD) is not new. The Journal of Computer-Aided Molecular Design (Springer) was founded in 1987, when computers in the worldwide top 500 were slower than today’s smart phones. This makes the field a quarter of a century old. Generally, scientific disciplines of t ... more

  • Authors

    Dr. Helene M. Loos

    Helene Loos studied food technology at the University of Hohenheim and completed her doctorate in food chemistry at the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) in 2015. During her doctoral studies, she investigated the aroma composition of breast milk and the behavioral resp ... more

    Diana Owsienko

    Diana Owsienko, born in 1994, studied food chemistry at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) in Erlangen from 2013 to 2017 and worked on her final scientific thesis at the Fraunhofer Institute for Process Engineering and Packaging (IVV) in Freising from 2017 to 2018. In 2 ... more

    Nadine I. Goldenstein

    Nadine Goldenstein studied Marine Environmental Sciences at the University of Bremen, Germany. Subsequently she worked as a scientist in Organic Biogeochemistry at MARUM, Bremen, where she concentrated her research activities on the investigation of microbial metabolic processes, with a foc ... more

More about University of Alberta

  • News

    The Secret Contamination of Polar Bears

    Using a new approach to measure chemical contaminants in polar bears, scientists from Canada and the United States found a large variety of new chlorinated and fluorinated substances, including many new polychlorinated biphenyl metabolites. Worryingly, these previously unrecognized contamin ... more

More about Ecole Polytechnique Fédérale de Lausanne

  • News

    Monitoring gene activities in living cells

    Researchers from ETH Zurich and EPFL are expanding the emerging field of single-​cell analysis with a ground-​breaking method: Live-​seq makes it possible to measure the activity of thousands of genes in a single cell without having to isolate and destroy it. Modern biology is increasingly ... more

    "Simulation microscope" examines transistors of the future

    Since the discovery of graphene, two-​dimensional materials have been the focus of materials research. Among other things, they could be used to build tiny, high-​performance transistors. Researchers at ETH Zurich and EPF Lausanne have now simulated and evaluated one hundred possible materi ... more

    Visualizing chemical reactions

    Researchers at the joint EPFL-Empa lab in Sion have developed a reactor system and an analysis method that has allowed them to observe the real-time production of synthetic natural gas from CO2 and H2 for the first time. Infrared (IR) thermography is used to determine the temperature of hu ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: