q&more
My watch list
my.chemie.de  
Login  

News

Decoding the way catalysts work

Good catalytic performance is driven chiefly by processes that occur on the surface of the catalyst – and not electrochemical processes

ETH Zürich / Matthias Frei

Oxygen bubbles produced on an electrocatalyst during water splitting.

20-Nov-2020: Splitting water into hydrogen and oxygen is an important chemical reaction, especially considering that the use of hydrogen as an energy source in sustainable mobility in the future. An international research team has now decoded how one of the catalysts used in this reaction works.

Hydrogen is a key element for achieving sustainable mobility in the future, especially “green” hydrogen produced by splitting water using renewable power. In fuel cells, hydrogen can be used in chemical reactions to generate electrical energy, which in turn can power electric motors. It is also used in the production of synthetic liquid fuels.

The process of using electricity to split water (electrolysis) involves two reactions that cannot take place independently: the formation of hydrogen at one electrode and oxygen at the other. Chemists call these two partial reactions hydrogen evolution and oxygen evolution. To make the whole process more energy-​efficient, scientists are researching the use of new materials that act as catalysts and thus facilitate these partial reactions.

Surface chemistry plays a decisive role

“By far the biggest challenge in developing catalysts for these two partial reactions is the oxygen evolution reaction,” says Javier Pérez-​Ramírez, Professor of Catalysis Engineering at ETH Zurich. An international research team led by the Fritz Haber Institute of the Max Planck Society in Berlin and involving the participation of ETH Zurich has now conducted a study that has yielded fundamentally new insights into catalyst materials for this oxygen evolution reaction. The researchers have been able to show that good catalytic performance is driven chiefly by processes that occur on the surface of the catalyst – and not electrochemical processes.

“We studied a special form of catalysis, namely electrocatalysis, and we found that it obeys the known laws of conventional catalytic reactions,” says Guido Zichittella, a scientist in Pérez-​Ramírez’s group. This finding is new because scientists previously thought that electrocatalytic reactions are primarily determined by electrochemical processes.

Specific catalytic activity

In their study, the researchers used catalysts made from the material most commonly used today by research labs to carry out this reaction: iridium oxide. ETH professor Pérez-​Ramírez and his group produced catalysts with varying degrees of activity, replacing different amounts of catalytically active oxygen atoms with catalytically inactive chlorine atoms. These catalysts enabled the researchers to examine the effects of surface chemistry separately from electrochemistry.

This new insight could help in the development of higher-​performance electrocatalysts and the search for new, cheaper catalytic materials, paving the way for sustainable, energy-​efficient and cost-​effective hydrogen production.

This research work was undertaken by researchers from the Fritz Haber Institute of the Max Planck Society, the Technische Universität Berlin, the Max Planck Institute for Chemical Energy Conversion, ETH Zurich and the Istituto officina dei materiali in Trieste.

Original publication:
Nong HN et al.; "Key role of chemistry versus bias in electrocatalytic oxygen evolution"; Nature; 18. Oktober 2020

Facts, background information, dossiers

More about ETH Zürich

  • News

    A 40-year-old catalyst unveils its secrets

    “Titanium silicalite-1” (TS-1) is not a new catalyst: It has been almost 40 years since its development and the discovery of its ability to convert propylene into propylene oxide, an important basic chemical in the chemical industry. Now, by combining various methods, a team of scientists f ... more

    Mechanism discovered how the coronavirus hijacks the cell

    Researchers at ETH Zurich and the University of Bern have discovered a mechanism by which the corona virus manipulates human cells to ensure its own replication. This knowledge will help to develop drugs and vaccines against the corona virus. Like a pirate hijacking a ship, a virus takes co ... more

    How bacteria adhere to fiber in the gut

    Researchers have revealed a new molecular mechanism by which bacteria adhere to cellulose fibers in the human gut. Thanks to two different binding modes, they can withstand the shear forces in the body. Scientists of the University of Basel and ETH Zurich published their results in the jour ... more

  • q&more articles

    Analysis in picoliter volumes

    Reducing time, costs and human resources: many basic as well as applied analytical and diagnostic challenges can be performed on lab-on-a-chip systems. They enable sample quantities to be reduced, work steps to be automated and completed in parallel, and are ideal for combination with highl ... more

    Investment for the Future

    This is a very particular concern and at the same time the demand placed annually on Dr. Irmgard Werner, who, as a lecturer at the ETH Zurich, supports around 65 pharmacy students in the 5th semester practical training in “pharmaceutical analysis”. With joy and enthusiasm for her subject sh ... more

  • Authors

    Prof. Dr. Petra S. Dittrich

    Petra Dittrich is an Associate Professor in the Department of Biosystems Science and Engineering at ETH Zurich (Switzerland). She studied chemistry at Bielefeld University and the University of Salamanca (Spain). After completing her doctoral studies at the Max Planck Institute for Biophysi ... more

    Dr. Felix Kurth

    Felix Kurth studied bioengineering at the Technical University Dortmund (Germany) and at the Royal Institute of Technology in Stockholm (Sweden). During his PhD studies at ETH Zurich (Switzerland), which he completed in 2015, he developed lab-on-a-chip systems and methods for quantifying me ... more

    Lucas Armbrecht

    Lucas Armbrecht studied microsystems technology at the University of Freiburg (Breisgau, Germany). During his master’s, he focused on sensors & actuators and lab-on-a-chip systems. Since June 2015, he is PhD student in the Bioanalytics Group at ETH Zurich (Switzerland). In his doctoral stud ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE