q&more
My watch list
my.chemie.de  
Login  

News

Useful “Fake” Peptides

Oligourea foldamers mimic peptides’ alpha-helices and effectively bind to drug targets

© Wiley-VCH

09-Dec-2020: Some useful drugs consist of peptides acting on their protein targets. To make them more efficient and stable, scientists have found a way to replace crucial segments of the peptides with ureido units. These oligoureas, which are composed of urea-based units, fold into a structure similar to that of peptides. Oligourea-based “fake” peptides enhance the options for rational drug design, concludes the study published in the journal Angewandte Chemie.

Several drugs are peptides that inhibit or activate the actions of certain proteins. To enhance their efficiency, scientists are investigating peptide mimics. Peptide mimics contain strands of small organic units that resemble amino acids—the building blocks of peptides—but are not identical to them. The rationale is that proteolytic enzymes will less likely attack such fake peptide strands, so the drugs would be more effective.

However, the synthetic strands—called oligomers—must fold into the structure of the original peptide to bind to its target protein properly. Gilles Guichard and his team from CNRS, University of Bordeaux, and colleagues from the University of Strasbourg and Ureka Pharma, Mulhouse, France, have explored oligomers made of ureido units, which are derivatives of urea. These oligoureas fold into a helix, one of the hallmark structures of peptides. However, there are slight differences. “Oligourea helices have fewer residues per turn, a smaller rise per turn, and a larger diameter than the original peptide alpha-helix,” says Guichard.

To determine whether oligoureas could mimic real peptide structures, the researchers prepared peptide–oligourea hybrids and investigated their binding to target proteins. One of the targets, MDM2, is a natural regulator of the tumor suppressor protein p53. The other one, VDR, is a protein required in the regulation of cell growth, immunity, and other biological functions.

For the MDM2-binding peptide mimic, the researchers prepared hybrids by replacing three terminal key amino acids with ureido units. For the VDR-binding peptide mimic, they replaced the middle amino acid segment with ureido units. After some rounds of optimization, the authors found hybrid structures with high binding affinities.

The binding affinities were similar to those of the original peptides. Moreover, X-ray analysis revealed that the hybrid structures adopted a regular helical structure. However, the helices were still a bit wider and had larger spaces between the side chains along the oligourea backbone than those of natural peptides.

Peptide–oligourea hybrids are expected to resist proteolytic degradation, an important goal in medicinal chemistry. Another advantage is that they allow more modifications. “Alpha amino acids can be substituted at two positions, but ureido units have one site more,” says Guichard. This means that hybrid peptide–oligourea drugs offer more options for optimization.

Original publication:
Dr. Léonie Cussol et al.; "Structural Basis for α‐Helix Mimicry and Inhibition of Protein–Protein Interactions with Oligourea Foldamers"; Angewandte Chemie International Edition; 2020

Facts, background information, dossiers

  • peptides
  • drug design
  • oligomers

More about Centre National de la Recherche Scientifique

  • News

    For a Better Contrast

    Magnetic resonance imaging (MRI) has emerged as one of the most powerful clinical imaging tools because of its superb spatial resolution and soft tissue contrast, especially when using contrast agents. In the European Journal of Inorganic Chemistry, scientists have presented a new kind of n ... more

More about Université Bordeaux

  • News

    Wireless microengine made from a twisted fibre

    A highly efficient, micro-sized motor-cum-energy storage system has been presented by researchers from the Helmholtz-Zentrum Geesthacht (HZG) and the University of Bordeaux in the journal ‘Science’. The ‘microengine’ is made from polymeric micro-fibres, which are stiff at room temperature. ... more

    For a Better Contrast

    Magnetic resonance imaging (MRI) has emerged as one of the most powerful clinical imaging tools because of its superb spatial resolution and soft tissue contrast, especially when using contrast agents. In the European Journal of Inorganic Chemistry, scientists have presented a new kind of n ... more

More about Université de Strasbourg

  • News

    Motor And Energy Store In One

    Physicists and material scientists have succeeded in constructing a motor and an energy storage device from one single component. They used an elastic polymer fibre closed into a ring that was made to rotate on application of an external energy supply. The researchers from the universities ... more

  • q&more articles

    A Light for Time, and a Time for Light

    As everybody knows, our eyes are the sensory organs that allow us to see the world around us. Light enters the eye through the pupil and strikes the photosensitive retina at the back to commence a complex biochemical and physiological process that we know as vision. This ability is vital to ... more

  • Authors

    Dr. David Hicks

    born in 1956, studied zoology at the University of Bristol, UK, before gaining his doctorate in developmental neuropsychology in London (1978–81). He subsequently spent a postdoc sojourn at the Faculty of Biochemistry at the University of British Columbia in Vancouver, Canada, where he firs ... more

More about Angewandte Chemie

  • News

    Degradable sugar-based polymers may store and release useful molecular freight

    Degradable, bio-based polymers offer options for chemical recycling, and they can be a tool to store and release useful molecules. Scientists have developed a class of sugar-based polymers that are degradable through acid hydrolysis. The researchers also integrated “cargo” molecules in the ... more

    Inverted Fluorescence

    Fluorescence usually entails the conversion of light at shorter wavelengths to light at longer wavelengths. Scientists have now discovered a chromophore system that goes the other way around. When excited by visible light, the fluorescent dyes emit light in the ultraviolet region. According ... more

    Combination Therapy against Cancer

    In their quest to destroy cancer cells, researchers are turning to combinational therapies more and more. Scientists from Germany and China have now combined a chemotherapeutic and photodynamic approach. All agents are encapsulated in nanocapsules with a protein shell to be delivered to the ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE