13-Jan-2021 - Forschungszentrum Jülich GmbH

Increasing the Activity of Catalysts

A key to producing green hydrogen more efficiently

A layer as thin as a single atom makes a huge difference: On the surface of an electrode, it doubles the amount of water split in an electrolysis system without increasing the energy requirements. Thus, the ultrathin layer also doubles the amount of hydrogen produced without increasing costs. Researchers from Jülich, Aachen, Stanford, and Berkeley report on this in the latest edition of the journal Nature Materials.

"By studying a model material we were able to gain a more detailed understanding of how the properties of a catalytically active electrode result from its structure," says Christoph Bäumer, first author of the study. Funded by a "Global Fellowship" from the Marie Skłodowska-Curie Actions he performed his research in Jülich and Aachen, as well as in the USA. "With this expanded understanding, we hope that better catalysts can be developed in the future to produce green hydrogen more energy-efficiently and thus more cost-effectively," the materials scientists explains.

The colourless hydrogen gas is known as green hydrogen if it is produced in a climate-neutral way, using electricity from renewable sources for the electrolysis of water. Hydrogen is considered an essential component of the energy transition, in part because it can store wind and solar energy in times of an oversupply to be released later. However, electrolytic hydrogen production at the negatively charged electrode (cathode) cannot take place without oxygen generation at the positively charged electrode (anode). Thus, catalysts that favour this kind of oxygen generation make the overall process more energy-efficient. The high energy requirements have been one of the main obstacles for a broad use of hydrogen so far.

Lanthanum nickelate (LaNiO3) that belongs to the perovskite material class is one such catalyst. The crystal structure alternates between layers of nickel oxide and lanthanum oxide. "We produced lanthanum nickelate catalysts more precisely and studied them in more detail than other scientists have before," says Felix Gunkel from the Peter Grünberg Institute, who led the research activities at Jülich. They did so by producing two different types of high-purity LaNiO3 crystals: In one type, the crystals terminate at a surface in which there are only lanthanum and oxygen atoms. Experts refer to this as lanthanum termination. In the other type, nickel and oxygen atoms form the surface (nickel termination).

It turned out that a nickel-terminated anode produces twice as much oxygen in the same time as an equally large lanthanum-terminated electrode. "Surprisingly, a single layer of nickel and oxygen atoms is responsible for a considerable increase in the catalytic activity of the material," Bäumer says. The team of scientists was also able to find a reason for this: During electrolysis, a disordered, catalytically very active layer of nickel dioxide forms on the Ni-terminated crystal, which cannot form with lanthanum termination. Compared to the initial structure, this newly formed nickel dioxide layer has ideal bonding states between nickel ions and oxygen or hydroxide ions, which increases the activity. "Our results indicate that if you want to develop particularly active catalysts, you have to take termination and the resulting structural changes under operating conditions into account for other materials as well," says William Chueh, professor at Stanford University.

In addition, the research results show the levers for determining this termination in perovskite materials: One of them is the temperature at which they are produced. The scientists discovered that in the case of lanthanum nickelate, high temperatures facilitate lanthanum termination. "To produce nickel-terminated crystals, we used a method that allows us to selectively apply an atomically thin layer of nickel atoms to the surface of a lanthanum-terminated crystal," Bäumer explains.

The researchers were only able to understand their findings because, for the first time in electrocatalyst research, they used a method that analyses the composition of the crystal surface by means of standing waves of synchrotron X-ray radiation. These standing waves can be generated by interference of the incident and the outgoing X-rays. A prerequisite for this was the atomically precise production of a LaNiO3 X-ray mirror consisting of 40 alternating layers, underneath the active layer to be investigated. The scientists used the Advanced Light Source in Berkeley (USA) as the X-ray source. The optimized bonding states between nickel ions and oxygen or hydroxide ions in the modified nickel surface were made evident by calculations conducted by scientists at the SLAC National Accelerator Laboratory in Menlo Park, USA.

The project was funded by the DOE Office of Science, and Baeumer was also supported by the European Union’s Horizon 2020 research and innovation program through a Marie Sklodowska-Curie fellowship.

Facts, background information, dossiers

More about Forschungszentrum Jülich

  • News

    A New Tool for Cryo-Electron Microscopy

    Researchers at Forschungszentrum Jülich and Heinrich Heine University Düsseldorf led by Prof. Dr. Carsten Sachse are using cryo-electron microscopy, or cryo-EM for short, to make biomolecules visible at the atomic level. In a paper now published in the journal Nature Methods, they present a ... more

    Synapses as a model: solid-state memory in neuromorphic circuits

    They are many times faster than flash memory and require significantly less energy: memristive memory cells could revolutionize the energy efficiency of neuromorphic computers. In these computers, which are modeled on the way the human brain works, memristive cells function like artificial ... more

    Alzheimer’s Research: New Insights into the Formation of Toxic Protein Clumps

    Small aggregates of proteins known as Aβ oligomers are suspected as the main cause for the development of Alzheimer’s disease. However, it is not yet clear where and under what conditions these toxic aggregates form. Researchers from Heinrich Heine University Düsseldorf and Forschungszentru ... more

  • q&more articles

    Macromolecular environments influence proteins

    The high-intensity interaction of proteins with other macromolecules can cause signifi cant changes to protein properties such as translational mobility, for example, or their conformational states. Accordingly, the study of proteins in macromolecular environments that typically very closel ... more

    Caffeine Kick

    Caffeine is the most widely consumed psychoactive substance worldwide. It supplies the active ingredient in beverages such as coffee, tea and energy drinks. Caffeine can focus vigilance and attention, reduce drowsiness and enhance the ability to perform cognitive functions. Its neurobiologi ... more

  • Authors

    Prof. Dr. Jörg Fitter

    Jörg Fitter studied physics at the University of Hamburg. After completing his doctoral studies at FU Berlin, he worked in neutron scattering and molecular biophysics at the Hahn Meitner Institute in Berlin and Jülich Research Center. He completed his habilitation in physical biology at Hei ... more

    Dr. David Elmenhorst

    studied medicine in Aachen before receiving his doctorate in sleep research from the German Aerospace Centre (Deutsches Zentrum für Luft- und Raumfahrt, DLR) in Cologne. During 2008/2009, he was a visiting researcher at the Brain Imaging Centre in Canada’s Montreal Neurological Institute an ... more

    Prof. Dr. Andreas Bauer

    studied medicine and philosophy in Aachen, Cologne and Düsseldorf, where he received his doctorate in the field of neuroreceptor autoradiography. After specialist medical training at Cologne University Hospital he completed his habilitation in neurology at the University of Düsseldorf. Sinc ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: