q&more
My watch list
my.chemie.de  
Login  

News

Degradable sugar-based polymers may store and release useful molecular freight

Options for chemical plastic recycling

© Wiley-VCH

25-Jan-2021: Degradable, bio-based polymers offer options for chemical recycling, and they can be a tool to store and release useful molecules. Scientists have developed a class of sugar-based polymers that are degradable through acid hydrolysis. The researchers also integrated “cargo” molecules in the polymer, which are designed to split off after polymer degradation. Degradable, cargo-bearing polymers are important for medical and sensor applications, says the study published in the journal Angewandte Chemie.

Most plastics resist natural degradation processes. Consequently, increasing contamination of the environment with plastics has led to a call for degradable plastics. Such materials can be subjected to chemical recycling processes, in which chemical reactions break up polymer bonds. Industry then either recovers the monomers and re-subjects them to polymerization, or it collects the resulting small molecules as useful building blocks for further reactions.

However, degradable polymers require a more elaborate polymer design. The linkages between the polymer building blocks should be sensitive to chemical or enzymatic treatments. In addition, sustainable polymers should be made of bio-based feedstock.

Tae-Lim Choi and colleagues from Seoul National University, South Korea, have found a way to produce high-quality polymers from xylose-based monomers. Xylose is a sugar found in plant cell walls. The method they use involves the preparation of the xylose-based monomers, including the attachment of linker groups, and reacting the monomers in a polymerization process called cascade metathesis polymerization.

To test if such plastic materials are degradable, the researchers treated the xylose-based polymers with hydrochloric acid, a treatment commonly found in chemical recycling procedures. The researchers found that the degradability depended on the linkage type. If the polymer contained a linkage made of a carbon atom, the polymer resisted hydrolysis, but linkages made with nitrogen or oxygen atoms led to immediate degradation.

Polymers with a nitrogen-based linkage resulted in compounds called pyrroles, whereas those made with oxygen produced furans. Pyrroles and furans are both abundant, naturally occurring compounds. However, the researchers advise care: “Furan derivatives are known to have a broad range of biological activity, which should be taken into consideration when identifying applications for these polymeric materials,” they said.

In block copolymers, different “blocks” of shorter polymer strands are attached to each other. Accordingly, block copolymers have properties arising from those of the single blocks. As many functional materials can be made with block copolymers, the authors tested whether xylose-based block copolymers containing blocks with non-degradable linkages would also disintegrate by acid treatment. They did. “After 24 h, also the carbon-linkage-containing block was almost completely degraded to small molecules, with only a little oligomeric material remaining,” the authors reported.

The researchers also integrated small reporter molecules in the polymers. Acid hydrolysis of the polymers with oxygen linkages produced furan derivatives, which subsequently released para-nitrophenol as a reporter molecule. “This type of cargo enables easy quantification of release. However, it can be substituted with other compounds, which exert various functions after their release,” Choi says.

Original publication:
Antonio Rizzoet al.; "Sugar‐Based Polymers from d‐Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release"; Angewandte Chemie International Edition; 2020

Facts, background information, dossiers

  • xylose
  • biodegradable polymers
  • block copolymers
  • plastic recycling

More about Seoul National University

  • News

    Flexible organic electronics mimic biological mechanosensory nerves

    Researchers at Seoul National University and Stanford University developed artificial mechanosensory nerves using flexible organic devices to emulate biological sensory afferent nerves. They used the artificial mechanosensory nerves to control a disabled insect leg and distinguish braille c ... more

    Peptide induces chirality evolution in a single gold nanoparticle

    For the first time, scientists have successfully created optically active, chiral gold nanoparticles using amino acids and peptides. Many chemicals significant to life have mirror-image twins (left-handed and right-handed structures), a characteristic that is conventionally called chirality ... more

    Mummified Remains Show Patterns of Parasitic Infections

    Studying parasites has many modern-day advantages for understanding diseases, but it can also help researchers to understand ancient cultures. By examining mummified remains from all over the world, researchers can understand how societies functioned then, and even understand daily habits a ... more

More about Angewandte Chemie

  • News

    Inverted Fluorescence

    Fluorescence usually entails the conversion of light at shorter wavelengths to light at longer wavelengths. Scientists have now discovered a chromophore system that goes the other way around. When excited by visible light, the fluorescent dyes emit light in the ultraviolet region. According ... more

    Useful “Fake” Peptides

    Some useful drugs consist of peptides acting on their protein targets. To make them more efficient and stable, scientists have found a way to replace crucial segments of the peptides with ureido units. These oligoureas, which are composed of urea-based units, fold into a structure similar t ... more

    Combination Therapy against Cancer

    In their quest to destroy cancer cells, researchers are turning to combinational therapies more and more. Scientists from Germany and China have now combined a chemotherapeutic and photodynamic approach. All agents are encapsulated in nanocapsules with a protein shell to be delivered to the ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE