26-Jan-2021 - Technische Universität Wien

Single atoms as a catalyst: Surprising effects ensue

For years, the metal nanoparticles used in catalysts have been getting smaller and smaller. Now, a research team have shown that everything is suddenly different when you arrive at the smallest possible size: a single atom

Metals such as gold or platinum are often used as catalysts. In the catalytic converters of vehicles, for example, platinum nanoparticles convert poisonous carbon monoxide into non-toxic CO2. Because platinum and other catalytically active metals are expensive and rare, the nanoparticles involved have been made smaller and smaller over time.

“Single-atom” catalysts are the logical end point of this downsizing: The metal is no longer present as particles, but as individual atoms that are anchored on the surface of a cheaper support material. Individual atoms can no longer be described using the rules developed from larger pieces of metal, so the rules used to predict which metals will be good catalysts must be revamped - this has now been achieved at TU Wien. As it turns out, single atom catalysts based on much cheaper materials might be even more effective.

Smaller is sometimes better

Only the outer atoms of the piece of metal can play a role in chemical processes - after all, the atoms inside never come into contact with the environment. In order to save material, it is therefore best to use tiny metal particles instead of large lumps, so that a greater proportion of the atoms reside at the surface. If we go to the ultimate limit and use individual atoms, every single atom is chemically active. Over the last decade the field of “single atom” catalysis has grown dramatically, achieving great success.

Wrong model, right solution

"The reasons why some precious metals are good catalysts was already researched in the 1970s," says Prof. Gareth Parkinson from the Institute for Applied Physics at TU Wien. “For example, Gerhard Ertl was awarded the Chemistry Nobel Prize in 2007 for providing atomic-scale insights into catalysis."

In a piece of metal, an electron can no longer be assigned to a specific atom; the electronic states result from the interaction of many atoms. "For individual atoms, the old models are no longer applicable" says Gareth Parkinson. "Individual atoms do not share electrons like a metal, so the electron bands, whose energy was key to explaining catalysis, simply do not exist in this case."

Gareth Parkinson and his team have therefore been intensively investigating the atomic mechanisms behind this single-atom catalysis in recent years. "In many cases the metals that we think of as good catalysts remain good catalysts in the form of individual atoms" says Gareth Parkinson. "In both cases it is the same electrons, the so-called d electrons, that are responsible for this."

Customized properties through tailored surfaces

Entirely new possibilities arise in single-atom catalysis that are not available when using ordinary metal particles: "Depending on the surface on which we place the metal atoms and which atomic bonds they form, we can change the reactivity of the atoms", explains Parkinson.

In some cases, particularly expensive metals like platinum are no longer necessarily the best choice. “Individual nickel atoms show great promise for carbon monoxide oxidation. If we understand the atomic mechanisms of single atom catalysis, we have a lot more leeway to influence the chemical processes,” says Parkinson.

Eight different metals were precisely analyzed in this way at TU Wien - the results fit perfectly with the theoretical models that have now been developed in a collaboration with Prof. Cesare Franchini at the University of Vienna.

"Catalysts are very important in many areas, especially when it comes to chemical reactions that play a major role in attempts to develop a renewable energy economy," emphasizes Gareth Parkinson. “Our new approach shows that it doesn't always have to be platinum.” The decisive factor is the local environment of the atoms - and if you choose it correctly, you can develop better catalysts and at the same time save resources and costs.

  • J. Hulva et al.; "Unravelling CO adsorption on model single-atom catalysts"; Science (2021).

Facts, background information, dossiers

More about TU Wien

  • News

    Bacteria as climate heroes

    To establish a carbon-neutral circular economy in the future, technologies are needed that use carbon dioxide as a raw material. In the form of formate, CO2 can be metabolised by certain bacteria. Acetogens are a group of bacteria that can metabolise formate. For example, they form acetic a ... more

    Tuneable Catalysis: Solving the Particle Size Puzzle

    Chemical reactions can be studied at different levels: At the level of individual atoms and molecules, new compounds can be designed. At the level of tiny particles on the nano and micrometre scale, one can understand how catalyst materials influence chemical reactions. And in order to use ... more

    Anchoring single atoms

    There is a dictum to “never change a running system”. New methods can however be far superior to older ones. While to date chemical reactions are mainly accelerated by catalytic materials that comprise several hundreds of atoms, the use of single atoms could provide a new approach for catal ... more

  • Authors

    Dr. Christian Derntl

    Christian Derntl, born in 1983, completed his diploma studies in microbiology and immunology at the University of Vienna. In 2014, he completed his PhD study in technical chemistry with distinction at TU Wien. The topic of his thesis was the regulation of cellulases in the fungus Trichoderm ... more

    Sarah Spitz

    Sarah Spitz, born in 1993, studied biotechnology at the University of Natural Resources and Applied Life Sciences (BOKU) in Vienna, graduating with an engineering diploma degree. While studying, she was employed for two years as a research assistant at the Department of Biotechnology (DBT) ... more

    Prof. Dr. Peter Ertl

    Peter Ertl, born in 1970, studied food and biotechnology at the University of Natural Resources and Applied Life Sciences, Vienna. He obtained a PhD in chemistry from the University of Waterloo, Canada, and subsequently spent several years as a postdoc at the University of California at Ber ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: