17-Feb-2021 - Max-Planck-Institut für Infektionsbiologie

Genotoxic E. coli “caught in the act”

Researchers reveal transformation of colon organoids in vitro

Escherichia coli bacteria are constitutive members of the human gut microbiota. However, some strains produce a genotoxin called colibactin, which is implicated in the development of colorectal cancer. While it has been shown that colibactin leaves very specific changes in the DNA of host cells that can be detected in colorectal cancer cells, such cancers take many years to develop, leaving the actual process by which a normal cell becomes cancerous obscure. The group of Thomas F. Meyer at the Max Planck Institute for Infection Biology in Berlin together with their collaborators have now been able to “catch colibactin in the act” of inducing genetic changes that are characteristic of colorectal cancer cells and cause a transformed phenotype – after only a few hours of infection.

More than two-thirds of colorectal cancer patients carry colibactin-producing E. coli strains in their gut and the number of carriers is rising in the western world. Epidemiological evidence for a link between certain bacterial species and some forms of human cancer abound – but it remains difficult to provide the direct proof required to justify extensive prevention strategies. Meyer’s team recently provided the first definitive evidence for such a link by identifying the genetic signature colibactin leaves in host cells, and showing that it can be detected in a subgroup of colorectal cancers.

Now they have gone a significant step further by utilizing organoids to observe transformation itself. This new technology makes it possible to grow normal, primary colon epithelial cells in culture in the form of 3D spheres. These hollow “mini-organs” are generated by the adult stem cells that drive the rapid turnover of the colonic mucosa. Prior to the advent of this technology, infection experiments in vitro required cell lines, which are already partially transformed and thus unsuitable for recapitulating the very early stages of cancer development. To test whether colibactin-producing E. coli have any lasting effect on host cells, the team infected their organoids for three hours. This was already sufficient to induce changes that are characteristic of colorectal cancer. Not only did the infected cells begin to proliferate faster than normal, but a subset of cells no longer required the presence of Wnt protein in the growth medium.

Growth factor drives stem cell turn-over

This critical “growth factor” is present in the environment surrounding the stem cells in the bottom of colon glands and drives their turn-over. Under healthy conditions, uncontrolled proliferation of the cells is prevented as soon as they leave this Wnt-containing niche. “Then they cease proliferation and take over digestive functions, only to be sloughed off once they reach the surface, pushed along by the continuous stream of cells leaving the stem cell niche,” says Michael Sigal, one of the senior authors who recently established his own laboratory at the Charité University Hospital in Berlin to study the phenomenon in greater detail. He further explains: “The same phenomenon can be observed in the organoid cultures: they require the continuous presence of Wnt to keep growing. Without it, the cells differentiate and die shortly afterwards.”

Such growth factor independence, as observed for the infected organoids, is a characteristic of early colorectal cancer cells. Sequencing of these organoids revealed that they contained numerous mutations, including large structural changes that led to whole sections of chromosomes being lost, gained or rearranged. "Surprisingly, we did not observe mutations in genes directly involved in Wnt signaling, which are known to cause colorectal cancer in patients who inherited such mutations. Instead, we found mutations related to p53 signaling”, says Amina Iftekhar, first author on the new paper. This important tumour suppressor is known as the “guardian of the genome” and so far, only a few studies had hinted at the possibility that it may also affect Wnt dependence.

Mutations in the p53 signaling pathway

Thomas F. Meyer explains that these findings fit well with the evidence from large cancer sequencing programs: “It is clear that colorectal cancer can arise through different mechanisms. In cases driven by chronic inflammation, such as Colitis or Crohn’s disease, where colibactin-producing E. coli strains are particularly prominent, mutations in p53 are indeed found to be an early event.” And the large chromosomal rearrangements they observed are found in the majority of colorectal cancer cases.

According to Meyer, this has important implications: “Although the majority of colorectal cancer patients carry colibactin-producing E. coli, we were puzzled by the fact that the colibactin signature can only be detected in a small proportion – up to ten percent. Our new results now suggest that the characteristic signature is the result of proper removal of the cross-links from the damaged sites in the DNA. If this healing process is jeopardized or the repair machinery gets overloaded, instead gross chromosomal changes and chromosomal aberrations seem to occur when the damaged cells attempt to overcome the DNA cross-links. The evidence of such botched repair is frequent in colorectal cancers and suggests that the carcinogenic effect of colibactin may be substantially greater than the ten percent of cases suggested by the signature alone”.

Facts, background information, dossiers

  • Escherichia coli
  • bacteria
  • colorectal cancer
  • cancer
  • organoids

More about MPI für Infektionsbiologie

  • News

    Bacteria leave signature in colon cancer cells

    Some bacterial pathogens cause damage in the genomes of their infected cells which could lead to the initiation of cancer. While it is difficult to link an infection with an onset of cancer that arises many years later in life, researchers have been looking for definitive proof that such li ... more

    Using alveolar epithelia as a model for corona infection

    Before new drugs can be administered to people, researchers first have to investigate their effects using cell cultures and animal testing. Human cell cultures are increasingly being used as a model system for this purpose. At the Max Planck Institute for Infection Biology in Berlin, a rese ... more

    Immune boost against the corona virus

    The course of the corona pandemic will strongly depend on how quickly medications or vaccines against the SARS co-virus 2 can be developed. In at least one Phase III study, researchers want to investigate whether the vaccine candidate VPM1002, originally developed against tuberculosis by sc ... more

More about Max-Planck-Gesellschaft

  • News

    Cell-culture breakthrough: Advanced “mini brains” in the dish

    “Outer Radial Glia” (oRG) cells are nervous system stem cells that are instrumental for the development of the human cortex and have been challenging to produce in the lab. Now, a team of Max Planck researchers from Berlin succeeded in generating brain organoids that are enriched with these ... more

    Green wave for “gene cabs”

    Viruses help researchers to introduce genes into cells so that they can produce active pharmaceutical ingredients, for example. Special peptides stimulate the process. Until now, however, the efficiency increase was poorly understood. A team of researchers from the MPI for Polymer Research, ... more

    Microparticles with feeling

    An international research team headed by the Max Planck Institute for Marine Microbiology in Bremen, Aarhus University and the Science for Life Lab in Uppsala has developed tiny particles that measure the oxygen concentration in their surroundings. In this way, they can track fluid flow and ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: