04-Mar-2021 - Universität Bayreuth

Toward the development of drugs for aging-related diseases

Study on the activation of the enzyme sirtuin 6

In the search for ways to effectively combat age-related human disease, the enzyme sirtuin 6 (Sirt6) has recently become a focus of biochemical research. A targeted activation of Sirt6 could prevent or mitigate such diseases, for example some types of cancer. In a paper for the journal "Nature Chemical Biology", biochemists from the University of Bayreuth have now shown how the small molecule MDL-801 binds to the enzyme Sirt6 and influences its activity. These findings stand to aid the development of new drugs.

The human body contains seven different sirtuins, named "Sirt1" to "Sirt7". These enzymes play an essential role in regulating metabolism and stress reactions. In recent years, the research team led by Prof. Dr. Clemens Steegborn at the University of Bayreuth has shown in several research articles how Sirt6 can be activated by small molecules. With their study, now published in Nature Chemical Biology, Steegborn and his research assistant Dr. Weijie You have followed up on these findings. They found that the molecule MDL-801 interacts with Sirt6 by using a unique structural feature of this enzyme: an unusually wide binding pocket that is easily accessible from the outside and is normally involved in interacting with substrate proteins. This molecular cavity continues in an open channel that leads to the catalytic centre of Sirt6. It is in this channel, characteristic of Sirt6, that MDL-801 anchors when it activates the enzyme. Mainly through activity studies and X-ray structure analyses, Steegborn and You were able to identify both the binding site and molecular processes involved in the activation of Sirt6 by MDL-801.

As the Bayreuth biochemists have already shown in earlier studies, the active substances UBCS039, quercetin, and fluvastatin are also able to activate Sirt6. To do so, they use the same open channel in which MDL-801 docks. This elongated cavity is also called the acyl channel. As soon as Sirt6 is in an activated state, it splits off acyl groups from proteins. Thereby, it influences, among other things, the synthesis of proteins controlled by genes. Findings on the activation of Sirt6 therefore offer valuable clues for the development of active substances that could counteract aging-related diseases - for example the development of tumours.

"All small molecules for which we have so far been able to demonstrate an activating effect on Sirt6 use the acyl channel to bind to Sirtuin 6. And although their chemical structures are very different, they do this in very similar ways. This opens up the opportunity for us to use the details of their respective interactions to fine-tune activating compounds. Such drugs would then be able to regulate Sirt6 in a specific way. Thereby, they could be used in a targeted way to prevent or cure diseases associated with the ageing process," says Steegborn.

With their new study, Steegborn and You have refuted a key statement that a research group in Shanghai published in Nature Chemical Biology in 2018. In this paper, MDL-801 was described as a new Sirt6 activator. An X-ray crystallographic structure was used to show that MDL-801 binds to a different molecular section of Sirt6 than other activators. "This structure, which resulted from a misinterpretation of experimental data, has misled numerous research teams since its publication. Our study corrects this error and thus makes it possible to work efficiently on improved activators," says Steegborn.

Facts, background information, dossiers

  • age-related diseases
  • sirtuins
  • enzymes

More about Uni Bayreuth

  • News

    Novel tools for biomedical applications: Bacterial magnetic nanoparticles

    Magnetic nanoparticles biosynthesized by bacteria might soon play an important role in biomedicine and biotechnology. Researchers of the University of Bayreuth have now developed and optimised a process for the isolation and purification of these particles from bacterial cells. In initial t ... more

    New perspectives for antibiotics research

    Researchers of the University of Bayreuth and the Columbia University in New York reported groundbreaking findings on protein biosynthesis in bacteria in the journal "iScience". The small protein NusG links the two large molecular machines that work together during gene expression, which is ... more

    Nitrogen – an exception in the periodic system?

    In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements. Under high pressures they have similar structures to heavier elements in the same group of elements. Only nitrogen always seemed unwilling to toe the line. However, high-pressure researc ... more

  • q&more articles

    Authentic food

    Authentic food is growing in popularity with consumers. In a heavily industrialized market, a regional, single-source and/or specially manufactured product is increasingly becoming a guarantor of greater value. In the premium segment in particular, economically motivated “food fraud” can re ... more

    More than honey?

    For thousands of years, the word “honey” has been synonymous with an all-natural, healthy food. Unsurprisingly, honey has also enjoyed unwavering popularity with consumers – and especially in times when organic food and a healthy lifestyle are more in vogue than ever before. more

    What Are We Eating?

    What ends up on our plates? We used to think we knew – until we were disabused of this notion in early 2013. Instead of beef, there had been large-scale use of processed horsemeat, especially in frozen products and mincemeat. Although this posed no hazard to health, the damage was enormous, ... more

  • Authors

    Dr. Christopher Igel

    completed his undergraduate studies in biochemistry at the University of Bayreuth from 2009 to 2013. He completed his bachelor’s dissertation entitled “Honey Analysis Using NMR” at the BIOmac research centre under the tutelage of Prof. Dr. Schwarzinger. more

    Wolfrat Bachert

    commenced his undergraduate studies in mechanical engineering at TU Dresden before moving to the University of Bayreuth in 2009 to study biology. In 2013, he completed his bachelor dissertation in the Dept. of Biochemistry under the tutelage of Prof. Dr. Wulf Blankenfeldt on the subject of ... more

    Prof. Dr. Stephan Clemens

    Stephan Clemens, Jg. 1963, studied biology in Münster and Brighton, then acquired his doctorate in Münster. Since his postdoc-stay at the University of California San Diego, his scientific interest has been mainly targeted at metal homoeostasis in plants. He uses the models Arabidopsis thal ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: