q&more
My watch list
my.chemie.de  
Login  

News

The Fastest One Wins

Enantioselective synthesis of indole derivatives

© Wiley-VCH

12-Apr-2021: Indole, and structures derived from it, are a component of many natural substances, such as the amino acid tryptophan. A new catalytic reaction produces cyclopenta[b]indoles—frameworks made of three rings that are joined at the edges—very selectively and with the desired spatial structure. As a research team reports in the journal Angewandte Chemie, the rates of the different steps of the reaction play a critical role.

Indole derivates are widely distributed in nature; they are part of serotonin and melatonin, as well as many alkaloids—some of which are used as drugs, for example, as treatments for Parkinson’s disease. Indole is an aromatic six-membered ring fused to a five-membered ring along one edge. The five-membered ring has a double bond and a nitrogen atom. The basic indole framework can be equipped with a variety of side groups or bound to additional rings. Indole and many indole derivatives can be made by an indole synthesis reaction developed by and named after Emil Fischer (acid-assisted condensation of ketones with phenyl hydrazines).

The most important class of indole derivatives are cyclopentane[b]indoles—molecules with a framework made of one indole unit and an additional five-membered ring. This five-membered ring can contain a chiral carbon center, which is a ring carbon that has two additional side groups, and it can be arranged in two ways that are mirror images of each other. Only one of the two enantiomers, or mirror images, is found in nature. However, the classic Fischer indole synthesis produces a mix of both enantiomers.

A team led by Santanu Mukherjee and Garima Jindal at the Indian Institute of Science, Bangalore (India) has now developed a catalytic version of the Fischer indole synthesis that primarily produces one of the enantiomers (i.e., the reaction is enantioselective). The starting materials are a class of diketones (2,2-disubstituted cyclopentane-1,3-diones) and phenylhydrazine derivatives equipped with special protecting groups. The secret of their success is a special catalyst: a chiral, cyclic phosphoric acid. The reaction is carried out in the presence of zinc chloride as a co-catalyst and an acidic cation-exchange resin, which captures the ammonia that forms as a byproduct.

The heart of the reaction mechanism is called a dynamic kinetic resolution. During the reaction, a chiral hydrazone is first formed as an intermediate in both enantiomeric forms. This step is reversible, so that both of the enantiomeric hydrazones can interconvert during the course of the reaction. The reaction of the hydrazones to make the indole derivatives is the actual catalytic reaction. This reaction is much faster for one of the hydrazone enantiomers compared to the other because one form has a more favorable geometry when binding to the chiral catalyst. The other hydrazone enantiomer reacts very slowly and leads to only a small amount of the indole product. Instead, the slow-to-react hydrazone enantiomer converts to the fast-reacting hydrazone enantiomer, causing the equilibrium to eventually shift to the product cyclopentane[b]indole.

This method made it possible for the team to produce many different indole derivatives in moderate yields, but with good to excellent enantiomeric selectivity.

Original publication:
Biki Ghosh et al.; "Catalytic Enantioselective Desymmetrizing Fischer Indolization through Dynamic Kinetic Resolution"; Angewandte Chemie International Edition; 2021

Facts, background information, dossiers

More about Angewandte Chemie

  • News

    Radical Attack on Live Cells

    Is there a way to chemically manipulate small, confined areas on cellular surfaces? Scientists have developed a microfluidic probe to send a flow of free radicals on live cells and track the outcome using fluorescence imaging. As outlined in the journal Angewandte Chemie, this approach make ... more

    Degradable sugar-based polymers may store and release useful molecular freight

    Degradable, bio-based polymers offer options for chemical recycling, and they can be a tool to store and release useful molecules. Scientists have developed a class of sugar-based polymers that are degradable through acid hydrolysis. The researchers also integrated “cargo” molecules in the ... more

    Inverted Fluorescence

    Fluorescence usually entails the conversion of light at shorter wavelengths to light at longer wavelengths. Scientists have now discovered a chromophore system that goes the other way around. When excited by visible light, the fluorescent dyes emit light in the ultraviolet region. According ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE