06-May-2021 - Technische Universität Wien

Tracking down the tiniest of forces: how T cells detect invaders

T cells use their antigen receptors like sticky fingers - a research team was able to observe them doing so

T-cells play a central role in our immune system: by means of their so-called T-cell receptors (TCR) they make out dangerous invaders or cancer cells in the body and then trigger an immune reaction. On a molecular level, this recognition process is still not sufficiently understood.

Intriguing observations have now been made by an interdisciplinary Viennese team of immunologists, biochemists and biophysicists. In a joint project funded by the Vienna Science and Technology Fund and the FWF, they investigated which mechanical processes take place when an antigen is recognized: As T cells move their TCRs pull on the antigen with a tiny force - about five pico-newtons (5 x 10-12 or 0.0000000005 newtons). This is not only sufficient to break the bonds between the TCRs and the antigen, it also helps T cells to find out whether they are interacting indeed with the antigen they are looking for. These results have now been published in the scientific journal "Nature Communications".

Tailor-made for a specific antigen

"Each T cell recognizes one specific antigen particularly well," explains Johannes Huppa, biochemist and immunology professor at MedUni Vienna. "To do so, it features around 100,000 TCRs of the same kind on its surface."

When viruses attack our body, infected cells present various fragments of viral proteins on their surface. T cells examine such cells for the presence of such antigens. "This works according to the lock-and-key principle," explains Johannes Huppa. "For each antigen, the body must produce T cells with matching TCRs. Put simply, each T-cell recognizes only one specific antigen to then subsequently trigger an immune response."

That particular antigen, or more precisely, any antigenic protein fragment presented that exactly matches the T cell's TCR, can form a somewhat stable bond. The question that needs to be answered by the T cell is: how stable is the binding between antigen and receptor?

Like a finger on the sticky surface

"Let's say we wish to find out whether a surface is sticky - we then test how stable the bond is between the surface and our finger," says Gerhard Schütz, Professor of Biophysics at TU Wien. "We touch the surface and pull the finger away until it comes off. That's a good strategy because this pull-away behavior quickly and easily provides us information about the attractive force between the finger and the surface."

In principle, T-cells do exactly the same. T cells are not static, they deform continuously and their cell membrane is in constant motion. When a TCR binds to an antigen, the cell exerts a steadily increasing pulling force until the binding eventually breaks. This can provide information about whether it is the antigen that the cell is looking for.

A nano-spring for force measurement

"This process can actually be measured, even at the level of individual molecules," says Dr. Janett Göhring, who was active as coordinator and first author of the study at both MedUni Vienna and TU Vienna. "A special protein was used for this, which behaves almost like a perfect nano-spring, explain the two other first authors Florian Kellner and Dr. Lukas Schrangl from MedUni Vienna and TU Vienna respectively: "The more traction is exerted on the protein, the longer it becomes. With special fluorescent marker molecules, you can measure how much the length of the protein has changed, and that provides information about the forces that occur". In this way, the group was able to show that T cells typically exert a force of up to 5 pico-newtons - a tiny force that can nevertheless separate the receptor from the antigen. By comparison, one would have to pull on more than 100 million such springs simultaneously to feel stickiness with a finger.

"Understanding the behavior of T cells at the molecular level would be a huge leap forward for medicine. We are still leagues away from that goal," says Johannes Huppa. "But", adds Gerhard Schütz, "we were able to show that not only chemical but also mechanical effects play a role. They have to be considered together."

Facts, background information, dossiers

  • T cells
  • T-cell receptors
  • immune system
  • antigens

More about TU Wien

  • News

    New Biochip Technology for Pharma Research

    In pharmaceutical research, small tissue spheres are used as mini-organ models for reproducible tests. TU Wien has found a way to develop a reliable standard for these tissue samples. Before drugs are tested in clinical trials, they must be tested either by animal experiments or, more recen ... more

    Nanoparticles: The Complex Rhythm of Chemistry

    Most of commercial chemicals are produced using catalysts. Usually, these catalysts consist of tiny metal nanoparticles that are placed on an oxidic support. Similar to a cut diamond, whose surface consists of different facets oriented in different directions, a catalytic nanoparticle also ... more

    The indestructible light beam

    Why is sugar not transparent? Because light that penetrates a piece of sugar is scattered, altered and deflected in a highly complicated way. However, as a research team from TU Wien (Vienna) and Utrecht University (Netherlands) has now been able to show, there is a class of very special li ... more

  • q&more articles

    Organs-on-a-Chip

    The aim of personalized medicine (or precision medicine) is to take patients’ personal features into consideration as much as possible for their medical treatment, thereby going beyond the functional diagnosis of the disease. A promising concept that is gaining ever more attention and showi ... more

  • Authors

    Sarah Spitz

    Sarah Spitz, born in 1993, studied biotechnology at the University of Natural Resources and Applied Life Sciences (BOKU) in Vienna, graduating with an engineering diploma degree. While studying, she was employed for two years as a research assistant at the Department of Biotechnology (DBT) ... more

    Prof. Dr. Peter Ertl

    Peter Ertl, born in 1970, studied food and biotechnology at the University of Natural Resources and Applied Life Sciences, Vienna. He obtained a PhD in chemistry from the University of Waterloo, Canada, and subsequently spent several years as a postdoc at the University of California at Ber ... more

    Dr. Kurt Brunner

    Kurt Brunner, born in 1973 graduated in Technical Chemistry from TU Vienna before obtaining his doctorate from the University’s Institute of Chemical Engineering in 2003. While preparing his thesis, he worked on the molecular biology of fungi. Following research work conducted at the Univer ... more

More about Medizinische Uni Wien

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: