06-May-2021 - Technische Universität Wien

Tracking down the tiniest of forces: how T cells detect invaders

T cells use their antigen receptors like sticky fingers - a research team was able to observe them doing so

T-cells play a central role in our immune system: by means of their so-called T-cell receptors (TCR) they make out dangerous invaders or cancer cells in the body and then trigger an immune reaction. On a molecular level, this recognition process is still not sufficiently understood.

Intriguing observations have now been made by an interdisciplinary Viennese team of immunologists, biochemists and biophysicists. In a joint project funded by the Vienna Science and Technology Fund and the FWF, they investigated which mechanical processes take place when an antigen is recognized: As T cells move their TCRs pull on the antigen with a tiny force - about five pico-newtons (5 x 10-12 or 0.0000000005 newtons). This is not only sufficient to break the bonds between the TCRs and the antigen, it also helps T cells to find out whether they are interacting indeed with the antigen they are looking for. These results have now been published in the scientific journal "Nature Communications".

Tailor-made for a specific antigen

"Each T cell recognizes one specific antigen particularly well," explains Johannes Huppa, biochemist and immunology professor at MedUni Vienna. "To do so, it features around 100,000 TCRs of the same kind on its surface."

When viruses attack our body, infected cells present various fragments of viral proteins on their surface. T cells examine such cells for the presence of such antigens. "This works according to the lock-and-key principle," explains Johannes Huppa. "For each antigen, the body must produce T cells with matching TCRs. Put simply, each T-cell recognizes only one specific antigen to then subsequently trigger an immune response."

That particular antigen, or more precisely, any antigenic protein fragment presented that exactly matches the T cell's TCR, can form a somewhat stable bond. The question that needs to be answered by the T cell is: how stable is the binding between antigen and receptor?

Like a finger on the sticky surface

"Let's say we wish to find out whether a surface is sticky - we then test how stable the bond is between the surface and our finger," says Gerhard Schütz, Professor of Biophysics at TU Wien. "We touch the surface and pull the finger away until it comes off. That's a good strategy because this pull-away behavior quickly and easily provides us information about the attractive force between the finger and the surface."

In principle, T-cells do exactly the same. T cells are not static, they deform continuously and their cell membrane is in constant motion. When a TCR binds to an antigen, the cell exerts a steadily increasing pulling force until the binding eventually breaks. This can provide information about whether it is the antigen that the cell is looking for.

A nano-spring for force measurement

"This process can actually be measured, even at the level of individual molecules," says Dr. Janett Göhring, who was active as coordinator and first author of the study at both MedUni Vienna and TU Vienna. "A special protein was used for this, which behaves almost like a perfect nano-spring, explain the two other first authors Florian Kellner and Dr. Lukas Schrangl from MedUni Vienna and TU Vienna respectively: "The more traction is exerted on the protein, the longer it becomes. With special fluorescent marker molecules, you can measure how much the length of the protein has changed, and that provides information about the forces that occur". In this way, the group was able to show that T cells typically exert a force of up to 5 pico-newtons - a tiny force that can nevertheless separate the receptor from the antigen. By comparison, one would have to pull on more than 100 million such springs simultaneously to feel stickiness with a finger.

"Understanding the behavior of T cells at the molecular level would be a huge leap forward for medicine. We are still leagues away from that goal," says Johannes Huppa. "But", adds Gerhard Schütz, "we were able to show that not only chemical but also mechanical effects play a role. They have to be considered together."

Facts, background information, dossiers

  • T cells
  • T-cell receptors
  • immune system
  • antigens

More about TU Wien

  • News

    Three Eyes See More than Two - monitoring a catalytic reaction with three different microscopies under exactly the same conditions in real time

    One has to look very closely to exactly understand what processes take place on the surfaces of catalysts. Solid catalysts are often finely structured materials made of tiny crystals. There are various microscopies to monitor chemical processes on such surfaces – they use, for example, ultr ... more

    Miniaturized Lab-on-a-Chip for real-time Chemical Analysis of Liquids

    An infrared sensor has been developed at TU Wien (Vienna) that analyses the content of liquids within the fraction of a second. In analytical chemistry, it is often necessary to accurately monitor the concentration change of certain substances in liquids on a time scale of seconds. Especial ... more

    A Molecule of Light and Matter

    A very special bonding state between atoms has been created in the laboratory for the first time: With a laser beam, atoms can be polarised so that they are positively charged on one side and negatively charged on the other. This makes them attract each other creating a very special bonding ... more

  • q&more articles

    The search for APIs in the genome of fungi

    Fungi hold enormous potential to discover new active pharmaceutical ingredients (APIs) and valuable substances, for example antibiotics, pigments and raw materials for biological plastics. While conventional discovery methods are reaching their limits, recent developments in bioinformatics ... more

    Organs-on-a-Chip

    The aim of personalized medicine (or precision medicine) is to take patients’ personal features into consideration as much as possible for their medical treatment, thereby going beyond the functional diagnosis of the disease. A promising concept that is gaining ever more attention and showi ... more

  • Authors

    Dr. Christian Derntl

    Christian Derntl, born in 1983, completed his diploma studies in microbiology and immunology at the University of Vienna. In 2014, he completed his PhD study in technical chemistry with distinction at TU Wien. The topic of his thesis was the regulation of cellulases in the fungus Trichoderm ... more

    Sarah Spitz

    Sarah Spitz, born in 1993, studied biotechnology at the University of Natural Resources and Applied Life Sciences (BOKU) in Vienna, graduating with an engineering diploma degree. While studying, she was employed for two years as a research assistant at the Department of Biotechnology (DBT) ... more

    Prof. Dr. Peter Ertl

    Peter Ertl, born in 1970, studied food and biotechnology at the University of Natural Resources and Applied Life Sciences, Vienna. He obtained a PhD in chemistry from the University of Waterloo, Canada, and subsequently spent several years as a postdoc at the University of California at Ber ... more

More about Medizinische Uni Wien

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: