18-May-2021 - Heinrich-Heine-Universität Düsseldorf

Tiny sensors for major advances

Using NMR spectrometry to analyse important molecules that have not been accessible before now

An international research team involving the working group of biophysicist Dr. Manuel Etzkorn from Heinrich Heine University Düsseldorf (HHU) has developed an approach for using NMR spectrometry to analyse important molecules that have not been accessible before now. In the journal Angewandte Chemie, the authors describe a simpler and efficient means of labelling the molecules with methyl groups as sensors.

To understand life at molecular level, we need to be able to investigate the central components such as proteins in as natural a form and environment as possible. NMR or ‘nuclear magnetic resonance’ spectroscopy offers unique opportunities in this regard.

Methyl groups within proteins are particularly suitable sensors for use in this method. Methyl groups are composed of one carbon and three hydrogen atoms. To amplify the signal from these sensors to a sufficient level, large portions of the remaining protein need to be enriched with deuterium atoms in complicated procedures. Deuterium is a hydrogen isotope with a proton and a neutron in its atomic nucleus. In the past, however, such enrichment was possible only using special production platforms.

As a result, the use of NMR spectroscopy to investigate systems that could not be produced using those platforms was either impossible or very limited. Such systems include in particular a whole range of therapeutically relevant systems such as antibodies or the class of GPCRs (‘G-protein coupled receptors’) targeted by a very large percentage of modern medicines.  

A research team at HHU led by Dr. Manuel Etzkorn from the Institute of Physical Biology and the Biomolecular NMR Centre (which is run jointly by HHU and Forschungszentrum Jülich) collaborated with colleagues from Sofia University, Harvard Medical School and the Dana Faber Cancer Institute in Boston to develop a new method that can integrate the characteristics required of the sensors in all common production platforms. The synthesis method is considerably simpler and over 20 times more cost effective than previous methods for integrating methyl group sensors. It also works in systems that were inaccessible up to now.

The journal Angewandte Chemie put the research work on the front cover of its current edition. This highlights the special importance of this topic for improving biophysical basic research and the resulting development of new kinds of medicines.

Dr. Etzkorn emphasises: “The new method will allow us and others to investigate the building blocks of life in an amazing level of detail and in environments that are as natural as possible.”

Facts, background information, dossiers

More about Universität Düsseldorf

  • News

    Release of Drugs from a Supramolecular Cage

    How can a highly effective drug be transported to the precise location in the body where it is needed? In the journal Angewandte Chemie, chemists at Heinrich Heine University Düsseldorf (HHU) together with colleagues in Aachen present a solution using a molecular cage that opens through ult ... more

    Artificial ‘candy canes’ block viruses

    Synthetic chains of molecules containing different sugars can inhibit viruses effectively. The extent to which such molecules could be used as antiviral drugs is illustrated by a team of researchers from Heinrich Heine University Düsseldorf (HHU) and University of Münster (WWU) in the Febru ... more

    Research into Parkinson’s disease: binding-protein prevents fibril proliferation

    Several neurodegenerative diseases such as Parkinson’s are closely linked to the aggregation of a specific protein, α-synuclein. An international collaborative project involving Heinrich Heine University Düsseldorf (HHU), Forschungszentrum Jülich (FZJ) and RWTH Aachen University has now she ... more

  • q&more articles

    Surprisingly simple molecules as potential OLED-Emitters?

    Organic light emitting diodes (OLEDs) are presently conquering the market for displays of smartphones and TVs. They also have a great potential in lighting applications. Current devices for the blue part of the visible spectrum lag behind their green and red counterparts in terms of efficie ... more

  • Authors

    Kristoffer Thom

    Kristoffer Thom, born in 1993, studied chemistry at the Heinrich-Heine-University Düsseldorf, where he completed his bachelor thesis in the group of Rainer Weinkauf on mass spectrometry of peptides. For his master thesis he joined the group of Peter Gilch, investigating novel emitters for O ... more

    Prof. Dr. Peter Gilch

    Peter Gilch, born 1970, studied chemistry at the University of Konstanz before receiving his PhD in 1999 from the Technical University Munich. He then joined the Ludwig-Maximilians-University Munich for his Habilitation (2004) at the Lehrstuhl für BioMolekulare Optik. Since 2009 he has been ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: