18-Jun-2021 - Albert-Ludwigs-Universität Freiburg

A remote control for gene transfer

Researchers develop technology to introduce genes into single cells in a targeted manner

The ability to insert desirable genes into animal or human cells is the basis of modern life science research and of widespread biomedical applications. The methods used to date for this purpose are mostly non-specific, making it difficult for scientists to control which cell will or will not take up a gene. For this gene transfer, the target genes are often packaged into “viral vectors.” These are viruses in which part of the genetic material has been replaced by the target genes. When researchers add these viral vectors to cells, the vectors introduce the genes into the cells. This is the principle behind some of the current SARS-CoV-2 vaccines such as those from AstraZeneca or Johnson&Johnson. However, it is difficult - even impossible - to control into which cells the target genes enter, since the viral vectors tend to dock non-specifically onto all cells of a certain cell type. A team of researchers from the Cluster of Excellence CIBSS - Centre for Integrative Biological Signalling Studies at the University of Freiburg, led by Dr. Maximilian Hörner, Prof. Dr. Wolfgang Schamel and Prof. Dr. Wilfried Weber, has developed a new technology that enables them to introduce target genes in a controlled manner and thereby control processes in individual selected cells.

Alteration to a viral vector

In their new method, the Freiburg researchers introduce the genetic information with an optical remote control. As a result, only cells that are illuminated with red light take up the desired genes. To do this, the scientists modified a type of viral vector known as an AAV vector, which is already in clinical use. "We took away the viral vector's ability to dock with cells," Hörner explains, "which is an essential step before the genetic material can be introduced."

To enable this control by light, the researchers have taken a red light photoreceptor system from the plant Arabidopsis thaliana (thale cress). This system consists of two proteins, PhyB and PIF, which bind to each other as soon as PhyB is illuminated with red light. The Freiburg team placed the protein PIF on the surface of the viral vector and modified the other protein PhyB so that it could bind to human cells. Once this modified vector, called OptoAAV, is in a cell culture along with the cell-binding protein, the protein binds to all cells. "If a selected cell is now illuminated with red light, the modified vector can bind to this cell and introduce the target genes into the illuminated cell," Hörner explains.

A key aspect of biological signal research

This new approach allows the researchers to introduce target genes into the desired cells within a tissue culture. The scientists also succeeded in illuminating the tissue culture successively at different locations, thus enabling the targeted introduction of different genes into different cells within a culture. With this technique, it is now possible to control desired processes in individual cells. This is essential for understanding how a single cell communicates with cells in its environment, for example, to control the development or regeneration of an organ. "As these viral vectors become more widely used in the therapeutic field," Weber says, "we think this new technology has the potential to make such biomedical applications more precise."

Facts, background information, dossiers

  • genes
  • gene transfer
  • vectors
  • viral vectors

More about Uni Freiburg

  • News

    A gene provides both protection and destruction

    The family of ENDOU enzymes is found in most organisms, yet its functions are only poorly understood. In humans, it has been connected with cancer. RNA viruses, such as SARS-CoV2, contain a gene corresponding to ENDOU, and this is important for virus replication and the suppression of the i ... more

    Hierarchical dynamics

    A tree moving in the wind: How long does it take for the movement of a branch to reach the tree trunk? And via which pathway is this movement transmitted? Researchers at Albert Ludwig University are applying these questions to proteins, the molecular machinery of the cell. A team led by Pro ... more

    A Small Protein in Bacteria Overlooked Up to Now

    The biological process of photosynthesis is found at the beginning of nearly all food chains. It produces oxygen to breathe and provides the energetic foundation for using biotechnological processes to synthesize biofuels and chemical feedstock. Therefore, researchers are particularly inter ... more

  • q&more articles

    Modular biofactories at the cellular level

    Despite his love for complex molecular architectures, this „dyed-in-the-wool“ bio-organic chemist has never embraced the conventional segregation of synthetic polymers and bio­logical macromolecules. All molecules are composed of atoms, after all. Why make an artificial distinction? Why not ... more

    Bookmarks

    From a pluripotent stem cell a muscle cell or a liver cell can form, which despite their difference in appearance, are genetically identical. From one and the same genotype, therefore, the most diverse phenotypes can be formed – epigenetics is making it possible! It is a very exciting area ... more

  • Authors

    Dr. Stefan Schiller

    Stefan M. Schiller studied chemistry at Gießen (Mainz, Germany) and the University of Massachusetts, majoring in macromolecular chemistry and biochemistry. For his doctorate in biomimetic membrane systems he worked till 2003 at the Max Planck Institute for Polymer Research in Mainz. Researc ... more

    Julia M. Wagner

    Julia M. Wagner studied pharmacy in Freiburg (licensure 2008). Since 2008 she is a PhD student and research assistant in the group of Professor Dr. M. Jung. Her research focuses ­on the cellular effects of histone deacetylase inhibitors. more

    Prof. Dr. Manfred Jung

    Manfred Jung is a graduate of the University of Marburg, where he studied pharmacy (licensure  1990) and obtained his doctorate in pharmaceutical chemistry with Prof. Dr. W. Hanefeld. After a post-doctorate at the University of Ottawa, Canada, he began with independent research in 1994 ­at ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: