22-Jun-2021 - University of Liverpool

Heat-Insulating Titanate

Discovering new leads for functional materials guided by artificial intelligence

Searching for lead materials with specific properties, researchers have developed a workflow that incorporates artificial intelligence to guide discovery of a new ceramic structure with particularly low thermal conductivity. As they explain in the journal Angewandte Chemie, the material has an unusual quasicrystalline structure, potentially paving the way for novel heat-insulating and thermoelectric materials.

Ceramics with low thermal conductivity are constantly being sought for heat protection coatings or thermoelectric applications. In other words, for generating current from heat. Matthew J. Rosseinsky of the University of Liverpool, UK, and his colleagues, took the chemical group of the titanates as their starting point in this search. Based on energy calculations, they concentrated their search on titanates containing fractions of yttrium and barium oxides.

To narrow down candidates with compositions which would give a material with potentially even lower thermal conductivity, the researchers turned to artificial intelligence, training machine learning models with ceramics of known composition and known thermal conductivity. The models confirmed their original knowledge-based decision to limit themselves to barium–yttrium titanates.

The AI results also showed that the composition can have further impact on the thermal conductivity. “This guided us to prefer one of the two composition regions identified by the energy calculations for experimental work,” Rosseinsky says. Thus, the researchers synthesized a new oxide, as yet unknown, composed of ten parts barium, six parts yttrium, four parts titanium, and 27 parts oxygen atoms.

The new material turned out to be metastable, and its structure proved to be particularly surprising. In “normal” crystals, atoms are arranged periodically. However, in the new material the team observed a “quasicrystalline” structure. Quasicrystals have an ordered arrangement of atoms, but not full three-dimensional periodicity. Only when quasicrystals are considered in terms of “long-range order” can the continuous periodicity typical of crystals be recognized. The team highlighted the significance of these findings: “Oxide quasicrystals have been observed at interfaces, however, the material presented here is the first that has been proposed as a quasicrystal in the bulk.”

The new titanate was found to have a lower thermal conductivity than almost all other known transition metal oxides of this type, with only one molybdenum oxide with a complex crystal structure giving better results. The authors also explained the thermal conductivity of their material in theoretical terms, comparing the behavior of the quasicrystal to that of glass. Glasses have an unordered material structure, and are known to be good thermal insulators.

The team emphasized the role of deploying an integrated set of tools, based on knowledge and understanding of chemistry, and incorporating machine learning models. “Our study shows how AI can help in decision making to accelerate discovery,” Rosseinsky says.

Facts, background information, dossiers

More about University of Liverpool

  • News

    New protein nanobioreactor designed to improve sustainable bioenergy production

    Researchers at the University of Liverpool have unlocked new possibilities for the future development of sustainable, clean bioenergy. The study, published in Nature Communications, shows how bacterial protein 'cages' can be reprogrammed as nanoscale bioreactors for hydrogen production. The ... more

    A highly active organic photocatalyst

    Scientists from the University of Liverpool, University College London and East China University of Science and Technology have synthesized a new organic material that can convert water into hydrogen fuel using sunlight. Photocatalytic solar hydrogen production--or water splitting--offers a ... more

More about Angewandte Chemie

  • News

    Electrons Passed Around

    Photoinduced charge transfers are an interesting electronic property of Prussian blue and some analogously structured compounds. A team of researchers has now been able to elucidate the ultrafast processes in the light-induced charge transfer between iron and manganese in a manganese-contai ... more

    Crystals Made to Fit

    We often say that a substrate fits into its enzyme like a key in a lock, but this metaphor is imperfect. Substrate binding can also change the lock (the structure of the enzyme) to induce a perfect fit. In the journal Angewandte Chemie, an international team of researchers has now introduce ... more

    Switched on IR-Active Organic Pigments

    In photosynthesis and organic photovoltaics, pigment molecules convert light into electrical charge. A team of chemists have now produced an unusual organic pigment, which is “switched on” by an electrical charge to become a potent dye that absorbs light in the near-infrared range. The team ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: