05-Jul-2021 - Universität Basel

Stretching changes the electronic properties of graphene

The electronic properties of graphene can be specifically modified by stretching the material evenly

Graphene consists of a single layer of carbon atoms arranged in a hexagonal lattice. The material is very flexible and has excellent electronic properties, making it attractive for numerous applications – electronic components in particular.

Researchers led by Professor Christian Schönenberger at the Swiss Nanoscience Institute and the Department of Physics at the University of Basel have now studied how the material’s electronic properties can be manipulated by mechanical stretching. In order to do this, they developed a kind of rack by which they stretch the atomically thin graphene layer in a controlled manner, while measuring its electronic properties.

Sandwiches on the rack

The scientists first prepared a “sandwich” comprising a layer of graphene between two layers of boron nitride. This stack of layers, furnished with electrical contacts, was placed on a flexible substrate.

The researchers then applied a force to the center of the sandwich from below using a wedge. “This enabled us to bend the stack in a controlled way, and to elongate the entire graphene layer,” explained lead author Dr. Lujun Wang.

“Stretching the graphene allowed us to specifically change the distance between the carbon atoms, and thus their binding energy,” added Dr. Andreas Baumgartner, who supervised the experiment.

Altered electronic states

The researchers first calibrated the stretching of the graphene using optical methods. They then used electrical transport measurements to study how the deformation of the graphene changes the electronic energies. The measurements need to be performed at minus 269°C for the energy changes to become visible.

“The distance between the atomic nuclei directly influences the properties of the electronic states in graphene,” said Baumgartner, summarizing the results. “With uniform stretching, only the electron velocity and energy can change. The energy change is essentially the ‘scalar potential’ predicted by theory, which we have now been able to demonstrate experimentally.”

These results could lead, for example, to the development of new sensors or new types of transistors. In addition, graphene serves as a model system for other two-dimensional materials that have become an important research topic worldwide in recent years.

Facts, background information, dossiers

  • graphane
  • Universität Basel
  • atoms

More about Universität Basel

  • News

    New class of substances for redox reactions

    An interdisciplinary, multinational research team presents a new class of chemical compounds that can be reversibly oxidized and reduced. The compounds known as 'pyrazinacenes' are simple, stable compounds that consist of a series of connected nitrogen-containing carbon rings. They are suit ... more

    An artificial cell on a chip

    Researchers at the University of Basel have developed a precisely controllable system for mimicking biochemical reaction cascades in cells. Using microfluidic technology, they produce miniature polymeric reaction containers equipped with the desired properties. This “cell on a chip” is usef ... more

    How bacteria adhere to fiber in the gut

    Researchers have revealed a new molecular mechanism by which bacteria adhere to cellulose fibers in the human gut. Thanks to two different binding modes, they can withstand the shear forces in the body. Scientists of the University of Basel and ETH Zurich published their results in the jour ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: