09-Aug-2021 - Karlsruher Institut für Technologie (KIT)

Automated chemical synthesis: reliable production and rapid knowledge gain

KIT Invests About Four Million Euros in Facility for Automated Synthesis

One of the most modern infrastructures for automated process control in chemistry is being built by the Karlsruhe Institute of Technology (KIT) together with BASF: The facility will initially produce new substances in parallel for applications in fields ranging from biology to materials science. In the long term, the facility will also enable a high-throughput process for chemical reactions. KIT is investing about four million euros in this project. The facility is located in the Karlsruhe Nano Micro Facility (KNMFi) and is open to internal and external scientists. 

The development of automated facilities for chemical reactions to produce new materials for various applications in biomedicine, pharmaceuticals, electronics and many other fields is the goal of scientists worldwide. "Such synthesis plants allow chemical reactions to be carried out in a reproducible and standardized manner thanks to automated processes without exposing humans to chemicals," explains Professor Stefan Bräse, director at KIT's Institute of Biological and Chemical Systems (IBCS). "In addition, automated processes increase the throughput of reactions and thus the efficiency of research projects. This leads to new findings more quickly. “

Over the next two years, KIT will invest around four million euros in the development of a plant for the automated synthesis of new chemical substances.. The facility will be located at KNMFi to provide interested internal and external researchers with permanent access to one of the most modern infrastructures for automated process control in chemistry. As a strategic partner, BASF will run projects in the facility to identify for example new active ingredients for agriculture.

Modular design facilitates future expansions

This project combines several projects prepared by researchers in the working group of Professor Stefan Bräse and other KIT scientists. Wherever possible, the system will integrate components of free hardware and software to enable transparent development and later use also by other researchers. In addition, the individual components of the system will be assembled in a modular way so that future extensions can be realized in an uncomplicated way. KIT is involved in various consortia of the National Research Data Infrastructure (NFDI), especially also in NFDI4Chem, which specializes in chemistry. Close coordination with the consortia and implementation of the software and standards developed in NFDI4Chem within the facility will ensure long-term sustainable research and promote the provision of research data according to established best practice models. 

Process control, robotics, software development and design work together 

Initially, the synthesis plant will be geared to projects in organic synthetic chemistry: It will produce small organic molecules on a scale of around ten milligrams to several hundred milligrams, for example for chemical intermediates or active pharmaceutical ingredients. In the future, however, the facility will also be able to be used flexibly and carry out reactions on a small scale so that researchers can investigate many reactions simultaneously in a parallelized process. For both use cases, BASF brings extensive expertise to the project as it is already running an automated, high throughput platform at its global headquarters in Ludwigshafen, Germany. "We are very much looking forward to working with the KIT groups involved" says Andy Wieja, Team Leader Combinatorics & Thermal Characterization at BASF. "The development of new technologies at KIT will provide new impulses for synthesis projects and process automation at BASF to accelerate research and development for future innovations. “

The project brings together experts in process control, robotics, software development and design to combine state-of-the-art technologies and established processes. Further partners from research as well as from industry are welcome.

Facts, background information, dossiers

  • robotics
  • automated chemical…
  • automated process control
  • high-throughput processes

More about KIT

  • News

    Machine Learning Speeds up Simulations in Material Science

    Research, development, and production of novel materials depend heavily on the availability of fast and at the same time accurate simulation methods. Machine learning, in which artificial intelligence (AI) autonomously acquires and applies new knowledge, will soon enable researchers to deve ... more

    Catalyst Research: Molecular Probes Require Highly Precise Calculations

    Catalysts are indispensable for many technologies. To further improve heterogeneous catalysts, it is required to analyze the complex processes on their surfaces, where the active sites are located. Scientists of Karlsruhe Institute of Technology (KIT), together with colleagues from Spain an ... more

    Producing Graphene from Carbon Dioxide

    The general public knows the chemical compound of carbon dioxide as a greenhouse gas in the atmosphere and because of its global-warming effect. However, carbon dioxide can also be a useful raw material for chemical reactions. A working group at Karlsruhe Institute of Technology (KIT) has n ... more

  • q&more articles

    Analytical quantitation of gluten in foods

    According to legislation, foods bearing a gluten-free label must not contain more than 20 mg of gluten per kilogram, which is crucial to ensure food safety for celiac disease patients. Gluten is detected by immunological, genomic, chromatographic and/or mass spectrometric methods, but the c ... more

    Assessing the lung toxicity of air pollutants

    The current debates on driving bans in European cities show not only how important air quality is to the public but also reveal the lack of available methods to directly assess the adverse effects of air pollutants on human health. more

  • Authors

    Prof. Dr. Katharina Scherf

    Katharina Scherf, born in 1985, leads the Department of Bioactive and Functional Food Chemistry at the Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT). Having studied food chemistry at the Technical University of Munich (TUM) she obtained her PhD degree and qualif ... more

    Majlinda Xhaferaj

    Majlinda Xhaferaj, born in 1992, completed her food chemistry studies in 2018 at the Karlsruhe Institute of Technology (KIT). Since 2019 she has been a PhD student under the supervision of Professor Dr. Katharina Scherf in the Department of Bioactive and Functional Food Chemistry. Her resea ... more

    Dipl. Ing. Sonja Mülhopt

    Sonja Mülhopt earned her diploma in mechanical engineering at the Berufsakademie Mannheim (now DHBW) in 2000, completing her concomitant training at the Karlsruhe Research Center, now the Karlsruhe Institute of Technology (KIT). In 2014 she received the Master of Science in Chemical Enginee ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: