01-Sep-2021 - Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH

AI helps to spot single diseased cells

Researchers developed a novel artificial intelligence algorithm for clinical applications called “scArches”. It efficiently compares patients’ cells with a reference atlas of cells of healthy individuals. This enables physicians to pinpoint cells in disease and prioritize them for personalized treatment in each patient.

The Human Cell Atlas is the world’s largest, growing single-cell reference atlas. It contains references of millions of cells across tissues, organs and developmental stages. These references help physicians to understand the influences of aging, environment and disease on a cell – and ultimately diagnose and treat patients better. Yet, reference atlases do not come without challenges. Single-cell datasets may contain measurement errors (batch effect), the global availability of computational resources is limited and the sharing of raw data is often legally restricted.

Researchers from Helmholtz Zentrum München and the Technical University of Munich (TUM) developed a novel algorithm called “scArches”, short for single-cell architecture surgery. The biggest advantage: “Instead of sharing raw data between clinics or research centers, the algorithm uses transfer learning to compare new datasets from single-cell genomics with existing references and thus preserves privacy and anonymity. This also makes annotating and interpreting of new data sets very easy and democratizes the usage of single-cell reference atlases dramatically,” says Mohammad Lotfollahi, the leading scientist of the algorithm

Example COVID-19

The researchers applied scArches to study COVID-19 in several lung bronchial samples. They compared the cells of COVID-19 patients to healthy references using single-cell transcriptomics. The algorithm was able to separate diseased cells from the references and thus enabled the user to pinpoint the cells in need for treatment, for both mild and severe COVID-19 cases. Biological variation between patients did not affect the quality of the mapping process.

Fabian Theis: “Our vision is that in the future we will use cell references as easily as we nowadays do for genome references. In other word, if you want to bake a cake, you usually do not want to try coming up with your own recipe – instead you just look one up in a cookbook. With scArches, we formalize and simplify this lookup process.”

Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH

Recommend news PDF version / Print Add news to watchlist

Share on

Facts, background information, dossiers

  • artificial intelligence
  • cells
  • personalized medicine
  • Covid-19

More about Helmholtz Zentrum München

  • News

    Fighting blood diseases with artificial intelligence

    How can we better diagnose blood diseases? A research group led by Helmholtz Munich aims to answer this question with artificial intelligence (AI). Their goal is to facilitate the time-consuming analysis of bone marrow cells under the microscope. The researchers developed the largest open-s ... more

    Pancreatic organoids on newly developed chip platform

    A new organoid-on-chip platform robustly mimics the key features of human pancreas development. This is a milestone on the way to being able to diagnose pancreatic cancer at an early stage in the future. The study was conducted by an interdisciplinary team of researchers from Helmholtz Zent ... more

    Revealing the secrets of cell competition

    Cellular competition is a crucial quality control process that ensures that the development of an organism relies on healthy cells. Researchers revealed the secrets underlying cell competition and what features can pre-determine whether a cell will survive or not. Defects in energy producti ... more

  • q&more articles

    Using deep learning to better understand blood disorders

    For a long time, doctors have been diagnosing disorders of the body’s hematopoietic system using a light microscope. The analysis of individual blood cells is largely performed manually. Now, artificial intelligence can lend them a digital hand. more

  • Authors

    Dr. Carsten Marr

    Carsten Marr, born in 1977, received his diploma in general physics from the Technische Universität München in 2002. He wrote his diploma thesis at the Max-Planck-Institute for Quantum Optics, Garching, Germany, and in 2003 visited the Quantum Information and Quantum Optics Theory Group at ... more

    Dr. Christian Matek

    Christian Matek, born in 1986, received undergraduate degrees in both Physics and Medicine in Munich. He then moved to the UK and finished his DPhil in Theoretical Physics at Oxford University in 2014. Since 2017, his main research interest has been applying artificial intelligence and mach ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: