06-Oct-2021 - Kungl. Vetenskapsakademien (The Royal Swedish Academy of Sciences)

Nobel Prize in Chemistry 2021 for the development of asymmetric organocatalysis

An ingenious tool for building molecules

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry 2021 to Benjamin List, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany and David W.C. MacMillan, Princeton University, USA “for the development of asymmetric organocatalysis”.

Building molecules is a difficult art. Benjamin List and David MacMillan are awarded the Nobel Prize in Chemistry 2021 for their development of a precise new tool for molecular construction: organocatalysis. This has had a great impact on pharmaceutical research, and has made chemistry greener.

Many research areas and industries are dependent on chemists’ ability to construct molecules that can form elastic and durable materials, store energy in batteries or inhibit the progression of diseases. This work requires catalysts, which are substances that control and accelerate chemical reactions, without becoming part of the final product. For example, catalysts in cars transform toxic substances in exhaust fumes to harmless molecules. Our bodies also contain thousands of catalysts in the form of enzymes, which chisel out the molecules necessary for life.

Catalysts are thus fundamental tools for chemists, but researchers long believed that there were, in principle, just two types of catalysts available: metals and enzymes. Benjamin List and David MacMillan are awarded the Nobel Prize in Chemistry 2021 because in 2000 they, independent of each other, developed a third type of catalysis. It is called asymmetric organocatalysis and builds upon small organic molecules.

“This concept for catalysis is as simple as it is ingenious, and the fact is that many people have wondered why we didn’t think of it earlier,” says Johan Åqvist, who is chair of the Nobel Committee for Chemistry.

Organic catalysts have a stable framework of carbon atoms, to which more active chemical groups can attach. These often contain common elements such as oxygen, nitrogen, sulphur or phosphorus. This means that these catalysts are both environmentally friendly and cheap to produce.

The rapid expansion in the use of organic catalysts is primarily due to their ability to drive asymmetric catalysis. When molecules are being built, situations often occur where two different molecules can form, which – just like our hands – are each other’s mirror image. Chemists will often only want one of these, particularly when producing pharmaceuticals.

Organocatalysis has developed at an astounding speed since 2000. Benjamin List and David MacMillan remain leaders in the field, and have shown that organic catalysts can be used to drive multitudes of chemical reactions. Using these reactions, researchers can now more efficiently construct anything from new pharmaceuticals to molecules that can capture light in solar cells. In this way, organocatalysts are bringing the greatest benefit to humankind.

Facts, background information, dossiers

  • David W.C. MacMillan
  • organocatalysis
  • asymmetric catalysis

More about Royal Swedish Academy of Sciences

More about Nobel Foundation

  • News

    Nobel Prize for Physiology or Medicine 2020 Announced

    This year’s Nobel Prize is awarded to three scientists who have made a decisive contribution to the fight against blood-borne hepatitis, a major global health problem that causes cirrhosis and liver cancer in people around the world. Harvey J. Alter, Michael Houghton and Charles M. Rice mad ... more

    Cool microscope technology revolutionises biochemistry

    We may soon have detailed images of life’s complex machineries in atomic resolution. The Nobel Prize in Chemistry 2017 is awarded to Jacques Dubochet, Joachim Frank and Richard Henderson for the development of cryo-electron microscopy, which both simplifies and improves the imaging of biomo ... more

    Revealing the molecular mechanisms of the circadian clock

    Life on Earth is adapted to the rotation of our planet. For many years we have known that living organisms, including humans, have an internal, biological clock that helps them anticipate and adapt to the regular rhythm of the day. But how does this clock actually work? Jeffrey C. Hall, Mic ... more

Most read news

  1. Natural substances show promise against coronavirus
  2. Plastics of the future will live many past lives, thanks to chemical recycling
  3. New glass for solar cells and LEDs
  4. Breakthrough in graphene research: Researchers wild about zigzags
  5. Initial repulsion does not rule out subsequent attraction
  6. Lessons from natural photosynthesis: conversion of CO₂ to raw materials for plastic!
  7. Atomic-scale tailoring of graphene approaches macroscopic world
  8. A new, sustainable way to make hydrogen for fuel cells and fertilizers
  9. Fighting fungal infections with metals
  10. Coatings for nuclear fuel preventing explosions in reactors

Topics A-Z

All topics

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: