13-Oct-2021 - Friedrich-Schiller-Universität Jena

Small molecules with a dual function

How a small RNA and a small protein regulate the metabolism of cholera bacteria and the production of the cholera toxin

The human gut is a multi-species habitat that can control our health and well-being. Bacteria, viruses and microbial fungi are part of this complex microbial community and help us with our digestion and immune defense. If the intestinal flora is impaired, for example by contaminated drinking water or food infected by germs, this can result in infectious diseases. Researchers of the Cluster of Excellence “Balance of the Microverse” at Friedrich Schiller University Jena are investigating how cholera bacteria manage to disturb the intestinal balance and at the same time produce a pathogenic toxin. In the current issue of the “EMBO Journal”, they present a previously unknown molecular mechanism for the production of the cholera toxin.

Central to this mechanism is a small ribonucleic acid (sRNA), together with a small protein. “Small ribonucleic acids and small proteins have often been overlooked in the past, but they play an important role in the physiology of microorganisms,” explains Prof. Kai Papenfort. “The molecular mechanisms by which these small molecules function have so far been only incompletely explored,” continues Papenfort, professor of General Microbiology at the University of Jena.

Ribonucleic acid intervenes at two distinct levels in the metabolism of the cholera pathogen

In their publication, Papenfort and his team were able to show that a single RNA molecule, called VcdRP (Vibrio cholerae dual RNA and protein), intervenes at two distinct levels in the metabolism of the cholera pathogen and thus controls its harmful effects. “On the one hand, the sRNA molecule contained in VcdRP inhibits the production of the cholera toxin. On the other hand, this small ribonucleic acid also simultaneously takes on the role of a piece of genetic information and encodes the blueprint for a small regulatory protein,” says Papenfort. This protein, in turn, activates a central metabolic pathway that converts dietary carbon into energy and biosynthetic building blocks such as amino acids.

“Our work shows that the toxin production and thus the disease-causing properties of the cholera bacterium are directly linked to its metabolism,” says Papenfort. For the first time, the researchers have been able to identify a sRNA with such a dual function in cholera bacteria. Their findings provide an important basis for developing new ways of combating cholera. At the same time, the new data could be useful in biotechnological applications with microorganisms that use the same molecular mechanism as that of the dual-function RNA. With its research, the team led by Papenfort supports the Cluster’s goal of understanding fundamental mechanisms of microbial communities and developing innovative therapeutic approaches.

Facts, background information, dossiers

  • cholera
  • bacteria
  • gut flora
  • RNA
  • Vibrio cholerae
  • small RNA

More about Uni Jena

  • News

    Turbo boost for materials research

    A new algorithm has been designed to help discover previously unknown material compounds. It was developed by a team from Martin Luther University Halle-Wittenberg (MLU), Friedrich Schiller University Jena and Lund University in Sweden. The researchers designed a form of artificial intellig ... more

    Artificial intelligence helps to find new natural substances

    More than a third of all medicines available today are based on active substances from nature and a research team from the University of Jena has developed a procedure to identify small active substance molecules much more quickly and easily. Secondary natural substances that occur in numer ... more

    Making the invisible visible

    Researchers from Friedrich Schiller University Jena, the University of California Berkeley and the Institut Polytechnique de Paris use intense laser light in the extreme ultraviolet spectrum to generate a non-linear optical process on a laboratory scale – a process which until now has only ... more

  • q&more articles

    Genes on sugar

    The targeted transport of DNA and RNA using vectors (mostly made from synthetic polymers) in cell cultures has become part of routine practice in biological R&D – a fact highlighted by the multitude of commercial kits now available. To date, however, obstacles relating to use in patients ha ... more

    Highly-prized components

    The isolation of bioactive plant ingredients, essential oils or dyes and flavourings of plant origin requires costly and sophisticated procedures. Several applications do not actually require isolation of the individual components, however – their concentration is sufficient. Moreover, for ... more

    Molecules in the mirror

    In 1871 the children‘s book “Through the Looking-Glass – And What Alice Found There” by the English author Lewis Carroll, in which Alice enters a world behind the mirror, was published. She explains to her cat: “First there’s the room you can see through the glass – that’s just the same as ... more

  • Authors

    Prof. Dr. Ulrich S. Schubert

    Ulrich S. Schubert, born in 1969, is Chair (W3) for Organic and Macromolecular Chemistry at Friedrich Schiller University Jena, Germany. He studied chemistry at the Universities of Frankfurt and Bayreuth and subsequently received his PhD from the Universities of Bayreuth and South Florida, ... more

    Prof. Dr. Thomas Heinze

    Thomas Heinze, born in 1958, studied chemistry at FSU Jena. After receiving his doctorate there in 1989 and subsequent postdoc work at KU Leuven (Belgium), he completed his habilitation in 1997. In 2001, he accepted a professorship in Macromolecular Chemistry at the University of Wuppertal ... more

    Prof. Dr. Dagmar Fischer

    Dagmar Fischer is a licensed pharmacist before obtaining her doctorate in pharmaceutical technology and biopharmacy from the Philipps University of Marburg in 1997. After a period spent at Texas Tech University Health Sciences Center (USA), she gained several years' experience as Head of Pr ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: